Skip to main content
Log in

The dynamic spatial reconstructor

A computed tomography system for high-speed simultaneous scanning of multiple cross sections of the heart

  • Articles
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A new generation whole-body computed tomography system has been developed to provide accurate visualization and measurement of the vital functions of the heart, lungs, and circulation. This dynamic spatial reconstructor system (DSR) provides stop-action (01-sec), rapidly sequential (60-per-second), synchronous volume (240 simultaneous adjacent 1-mm-thick transaxial sections) reconstructions and display of the full anatomic extents of the internal and external surfaces of the heart throughout successive cardiac cycles, and will permit visualization of the three-dimensional vascular anatomy and circulatory functions in all regions of the body of patients with cardiovascular and other circulatory disabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfidi, R. J., MacIntyre, W. J., and Haager, J. R., The effects of biological motion on CT resolution.Am. J. Roentgenol. 127:11–15, 1976.

    Google Scholar 

  2. Boyd, D. P., Korobin, M. T., and Moss, A., Engineering status of computerized tomographic scanning.Opt. Eng. 16(1):37–44, 1977.

    Google Scholar 

  3. Ritman, E. L., Robb, R. A., Johnson, S. A., Chevalier, P. A., Gilbert, B. K., Greenleaf, J. F., Sturm, R. E., and Wood, E. H., Quantitative imaging of the structure and function of the heart, lungs, and circulation.Mayo Clin. Proc. 53:3–11, 1978.

    PubMed  Google Scholar 

  4. Robb, R. A., Ritman, E. L., Gilbert, B. K., Kinsey, J. H., Harris, L. D., and Woods, E. H., The DSR: A high-speed three-dimensional x-ray computed tomography system for dynamic spatial reconstruction of the heart and circulation.IEEE Trans. Nucl. Sci. NS-26(2):2713–2717, 1979.

    Google Scholar 

  5. Gilbert, B. K., Storma, M. T., Ballard, K. C., Hobrock, L. W., James, C. E., and Wood, E. H., A programmable dynamic memory allocation system for input/output of digital data into standard computer memories at 40 megasamples/s.IEEE Trans. Comput. C-25(11):1101–1109, 1976.

    Google Scholar 

  6. Gilbert, B. K., Harris, L. D., and Chu, A., Special purpose digital processor architectures and numerical approximation methods for application to high-speed computerized tomography.Computer Aided Tomography and Ultrasonics in Medicine, IFIP (J. Raviv, J. F. Greenleaf, and G. T. Herman, eds.). North-Holland, Amsterdam, 1979, pp. 13–36.

    Google Scholar 

  7. Traub, A. C., A new three-dimensional display technique. Report #M68-4 of the Mitre Corporation, Bedford, Mass., 1968.

  8. Harris, L. D., Robb, R. A., Yuen, T. S., and Ritman, E. L., The display and visualization of 3-D reconstructed anatomic morphology: Experience with the thorax, heart, and coronary vasculature of dogs.J. Comput. Assisted Tomogr. 3(4):439–446, 1979.

    Google Scholar 

  9. Minerbo, G. N., Convolutional reconstruction from cone beam projection data.IEEE Trans. Nucl. Sci. NS-26(2):2682–2684, 1979.

    Google Scholar 

  10. Altschuler, M. D., et al., Demonstration of a software package for the reconstruction of the dynamically changing structure of the human heart from cone beam x-ray projection. Technical Report No. MIPG32, Department of Computer Science, SUNY/Buffalo, 1979.

    Google Scholar 

  11. Altschuler, M. D., Chang, T., and Chu, A., Rapid computer generation of three-dimensional phantoms and their cone beam x-ray projections.SPIE Appl. Opt. Instrum. Med. VII 173:287–290, 1979.

    Google Scholar 

  12. Herman, G. T., Lakshminarayanan, A. V., Naparstek A., Ritman, E. L., Robb, R. A., and Wood, E. H., Rapid computerized tomography.Medical Data Processing (M. Laudet, J. Anderson, and S. Begon, eds.), Taylor and Francis. London, 1976, pp. 581–598.

    Google Scholar 

  13. Shepp, L. A., and Logan, B. F., The Fourier reconstruction of a head section.IEEE Trans. Nucl. Sci. NS-21(3):21–43, 1974.

    Google Scholar 

  14. Lewitt, R. M., Processing of incomplete measurement data in computed tomography.Med. Phys. 6(5):412–417, 1979.

    Article  Google Scholar 

  15. Sturm, R. E., Ritman, E. L., Johnson, S. A., Wondrow, M. A., Erdman, D. I., and Wood, E. H., Prototype of a single x-ray video imaging chain designed for high temporal resolution computerized tomography by means of an electronic scanning dynamic spatial reconstruction system.Proc. San Diego Biomed. Symp. 15:181–188, 1976.

    Google Scholar 

  16. Robb, R. A., and Gilbert, B. K., Evaluation of performance of the dynamic spatial reconstructor: A system for high-speed synchronous volume computed tomography of the body.Ill-Posed Problems: Theory and Practice. (M. Z. Nashed, ed.), D. Reidel, Dordrecht-Boston-London, 1980.

    Google Scholar 

  17. Muhm, D. R., Brown, L. R., and Crowe, J. K., Detection of pulmonary nodules by computed tomography.Am. J. Roentgenol. 128:267–270, 1977.

    Google Scholar 

  18. Ruegsegger, P. E., Ritman, E. L., and Wood, E. H., Performance of a cylindrical CT scanning system for dynamic studies of the heart and lungs.Proc. San Diego Biomed. Symp. 16:143–157, 1977.

    Google Scholar 

  19. Brooks, R. A., and DiChiro, G., Beam hardening in x-ray computed tomography.Phys. Med. Biol. 21(3):390–398, 1976.

    Article  Google Scholar 

  20. Ruegsegger, P., Hangartner, Th., Keller, H. U., and Hinderling, Th., Standardization of computed tomography images by means of a material-selective beam hardening correction.J. Comput. Assisted Tomogr. 2(2):184–188, 1978.

    Google Scholar 

  21. Robb, R. A., Lent, A. H., and Chu, A., A computer-based system for high-speed three-dimensional imaging of the heart and circulation: Evaluation of performance by simulation and prototype.Proceedings of the Thirteenth Hawaii International Conference on System Sciences. Vol. 3, 1980, pp. 384–405.

    Google Scholar 

  22. Boyd, D. P., Status of diagnostic x-ray CT.IEEE Trans. Nucl. Sci. NS-26(2):2836–2839, 1979.

    Google Scholar 

  23. Robb, R. A., Greenleaf, J. F., Ritman, E. L., Johnson, S. A., Sjostrand, J. D., Herman, G. T., and Wood, E. H., Three-dimensional visualization of the intact thorax and contents: A technique for crosssectional reconstruction for multiplanar x-ray views.Comput. Biomed. Res. 7:395–419, 1974.

    Article  PubMed  Google Scholar 

  24. Robb, R. A., Harris, L. D., and Ritman, E. L., Computerized x-ray reconstruction tomography in stereometric analysis of cardiovascular dynamics.Proc. Soc. Photo-Opt. Instrum. Eng. 89:69–82, 1976.

    Google Scholar 

  25. Liu, H. K., Two- and three-dimensional boundary detection.Comput. Graphics Image Processing 6(2):123–134, 1977.

    Google Scholar 

  26. Wood, E. H., New vistas for the study of structural and functional dynamics of the heart, lungs, and circulation by non-invasive numerical tomographic vivisection.Circulation 56(4):506–520, 1977.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by grants HL-04664 and RR-00007 from the National Institutes of Health. An earlier version of this paper was published inProceedings of the 13th Annual Hawaii International Conference on System Sciences, Vol. 3, 1980, by Western Periodicals Co., North Hollywood, Calif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robb, R.A., Lent, A.H., Gilbert, B.K. et al. The dynamic spatial reconstructor. J Med Syst 4, 253–288 (1980). https://doi.org/10.1007/BF02222467

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02222467

Keywords

Navigation