Advertisement

Current Genetics

, Volume 29, Issue 5, pp 462–467 | Cite as

Evidence forsltA1 as a salt-sensitive allele of the arginase gene (agaA) in the ascomyceteAspergillus nidulans

  • D. J. Clement
  • M. S. Stanley
  • N. A. Attwell
  • N. J. W. Clipson
  • D. A. Fincham
  • P. Hooley
Original Paper

Abstract

Strains ofAspergillus nidulans carrying thesltA1 mutation, conferring sensitivity to KCl and NaCl, also showed an arginine-sensitive phenotype whereby concentrations of thel-amino acid at or above 10 mM were toxic to growth. Sexual progeny of a cross between asltA1 mutant and a wild-type strain showed a co-segregation of salt and arginine sensitivity. Similarly, revertants to salt tolerance showed a loss of arginine sensitivity as didsltA1 strains that were transformed with a cosmid carrying the putativesltA1+ wild-type allele. In addition, arginine sensitivity could be relieved byl-ornithine. It is suggested thatsltA1 is a salt-sensitive allele of the arginase gene (agaA).

Keywords

A. nidulans Salt sensitivity Arginase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector forAspergillus nidulans. Gene 36:321–331PubMedGoogle Scholar
  2. Bartnik E, Weglenski P (1974) Regulation of arginine catabolism inAspergillus nidulans. Nature 250:590–592PubMedGoogle Scholar
  3. Beever RE, Laracy EP (1986) Osmotic adjustment in the filamentous fungusAspergillus nidulans. J Bacteriol 168:1358–1365PubMedGoogle Scholar
  4. Chabani AW, Grindle M (1990) Isolation, characterization and genetic analysis of mutants ofAspergillus nidulans resistant to the herbicide dichlobenil. Mycol Res 94:523–528Google Scholar
  5. Clement DJ, Attwell NA, Stanley MS, Clipson NJW, Hooley P, Fincham DA (1994) Salt sensitivity and arginine toxicity inAspergillus nidulans. Biochem Soc Trans 22:24SGoogle Scholar
  6. Clipson NJW, Jennings DH (1992)Dendryphiella salina andDebaryomyces hansenii: models for ecophysiological adaptation to salinity by fungi which live in the sea. Can J Bot 70: 2097–2105Google Scholar
  7. Clutterbuck AJ (1974)Aspergillus nidulans. In: King RC (ed) Handbook of genetics. vol 1. Plenum Press, New York, pp 447–510Google Scholar
  8. Clutterbuck AJ (1993)Aspergillus nidulans. In: O'Brien SJ (ed) Genetic maps. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  9. Demitriou JA, Drewes PA, Gin JB (1974) Enzymes: argininosuccinate lyase. In: Henry RJ, Cannon DC, Winkelman JW (eds) Clinical chemistry principles and techniques. Harper and Row, Hagerstown, Maryland, pp 974–978Google Scholar
  10. Dym O, Mevarech M, Sussman JL (1995) Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267:1344–1346Google Scholar
  11. Katz D, Rosenberger RF (1970) A mutation inAspergillus nidulans producing hyphal walls that lack chitin. Biochim Biophys Acta 208:452–460PubMedGoogle Scholar
  12. Maniatis T, Fritsch EF, Sambrook S (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  13. Morgan DH (1970) Selection and characterization of mutants lacking arginase inNeurospora crassa. Mol Gen Genet 108:291–302PubMedGoogle Scholar
  14. Murguia JR, Belles JM, Serrano R (1995) A salt-sensitive 3′ (2′), 5′ bisphosphate nucleotidase involved in sulphate activation. Science 267:232–234PubMedGoogle Scholar
  15. Paton FM, Jennings DH (1988) Effect of sodium and potassium chloride and polyols on malate and glucose 6-phosphate dehydrogenase from the marine fungusDendryphiella salina. Trans Br Mycol Soc 91:205–215Google Scholar
  16. Smith DJ, Bull JH, Edwards J, Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain ofPenicilliium chrysogenum producing high levels of penicillin. Mol Gen Genet 216:492–497PubMedGoogle Scholar
  17. Spathas DH (1978) A salt-sensitive mutant on chromosome V1 ofAspergillus nidulans. Aspergillus Newslett 14:28Google Scholar
  18. Stanley MS, Hooley P, Clipson NJW (1995) A rapid method of heterologous gene cloning using cotransformation of lambda genomic DNA banks inAspergillus nidulans. Fungal Genet Newslett 42:76–77Google Scholar
  19. Turner G (1994) Vectors for genetic manipulation In: Martinelli SD, Kinghorn JR (eds)Aspergillus: 50 years on. Elsevier Science Publishers, Amsterdam, pp 641–645Google Scholar
  20. Walters DR (1995) Inhibition of polyamine synthesis in fungi. Mycol Res 99:129–139Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • D. J. Clement
    • 1
  • M. S. Stanley
    • 1
  • N. A. Attwell
    • 1
  • N. J. W. Clipson
    • 1
  • D. A. Fincham
    • 1
  • P. Hooley
    • 1
  1. 1.School of Applied SciencesUniversity of WolverhamptonWolverhamptonUK

Personalised recommendations