Boundary-Layer Meteorology

, Volume 16, Issue 1, pp 23–33 | Cite as

Simulating the moderating effect of a lake on downwind temperatures

  • R. G. BillJr.
  • E. Chen
  • R. A. Sutherland
  • J. F. Bartholic


A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.


Surface Temperature Numerical Model Thermal Effect Surface Wind Cold Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Coriolis parameter


Acceleration of gravity


Turbulent eddy coefficient


Moisture availability parameter


Net long-wave absorbed radiation


Specific humidity




Geostrophic wind


Horizontal, crosswind, and vertical velocity components


Horizontal and vertical coordinates




Potential temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, L. H.: 1975, ‘Line-Source Carbon Dioxide Release’,Boundary-Layer Meteorol. 8, 39–79.Google Scholar
  2. Bill, R. G., Jr., Sutherland, R. A., Bartholic, J. F., and Chen, E.: 1978 ‘Observations of the Convective Plume of a Lake Under Cold Air Advective Conditions’,Boundary-Layer Meteorol. 14, 543–556.Google Scholar
  3. Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in Neutral Atmosphere’,J. Geophys. Res. 67, 3095–3102.Google Scholar
  4. Chang, J. H.: 1968, Climate and Agriculture Aldine Publishing Co., Chicago, 304 pp.Google Scholar
  5. Gerber, J. F. and Hashemi, F.: 1965, ‘The Freezing Point of Citrus Leaves’,Proc. Amer. Sec. Hort. Sci. 86, 220–225.Google Scholar
  6. Gutman, D. P., Torrance, K. E., and Estoque, M. A.: 1973, ‘Use of the Numerical Method of Estoque and Bhunralkar for the Planetary Boundary Layer’,Boundary-Layer Meteorol. 1, 169–194.Google Scholar
  7. Gutman, D. P.: 1974, ‘Heat Rejection and Roughness Effects on the Planetary Boundary Layer Above Cities’, Ph. D. Thesis, Cornell University, Ithaca, New York. 223 p.Google Scholar
  8. Gutman and Torrance, K. E.: 1975, ‘Response of the Urban Boundary Layer to Heat Addition and Surface Roughness’, Boundary-Layer Meteorol.9, 217–233.Google Scholar
  9. Kraus, E. D.: 1972,Atmosphere-Ocean Interaction, Clarendon Press, Oxford, 275 p.Google Scholar
  10. Pielke R. A. 1974, ‘A Three-Dimensional Numerical Model of the Sea Breeze Over South Florida’.Mon. Weather Rev. 102, 115–139.Google Scholar
  11. Puffer, R. E. and Turrell, F. M.: 1967, ‘Frost Protection in Citrus’. Univ. of Ca. Agric. Ext. Ser., AXT-108, 8 p.Google Scholar
  12. Van Wijk, W. R., ed.: 1963, Physics of Plant Environment, North-Holland Publishing Co., Amsterdam.Google Scholar
  13. Zdunkowski, W. G., and Johnson, F. G., 1965: ‘Infrared Flux Divergence Calculations with Newly constructed Radiation Tables’.J. Appl. Meteor.,4, 371–377.Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • R. G. BillJr.
    • 1
  • E. Chen
    • 1
  • R. A. Sutherland
    • 1
  • J. F. Bartholic
    • 1
  1. 1.Office of Water Resources and Department of Fruit CropsUniveristy of FloridaGainesvilleUSA

Personalised recommendations