Advertisement

Numerische Mathematik

, Volume 16, Issue 3, pp 205–223 | Cite as

Simultaneous iteration method for symmetric matrices

  • H. Rutishauser
Handbook Series Linear Algebra

Keywords

Mathematical Method Iteration Method Symmetric Matrice Simultaneous Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., Martin, R. S., Wilkinson, J. H.: Calculation of the eigenvalues of a symmetric tridiagonal matrix by the bisection method. Num. Math.9, 386–393 (1967).Google Scholar
  2. 2.
    Bauer, F. L.: Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme. ZAMP8, 214–235 (1957)Google Scholar
  3. 3.
    Bowdler, H., Martin, R. S., Reinsch, C., Wilkinson, J. H.: TheQL andQR algorithms for symmetric matrices. Num. Math.11, 293–306 (1968).Google Scholar
  4. 4.
    Engeli, M., Ginsburg, Th., Rutishauser, H., Stiefel, E.: Refined iterative methods for computing of the solution and the eigenvalues of selfadjoint boundary value problems. Mitteilung Nr. 8 aus dem Institut für angewandte Mathematik der ETH, Zürich. Basel: Birkhäuser 1959Google Scholar
  5. 5.
    Jennings, A.: A direct method for computing latent roots and vectors of a symmetric matrix. Proc. Camb. Phil. Soc.63, 755–765 (1967).Google Scholar
  6. 6.
    Läuchli, P., Waldburger, H.: Berechnung von Beulwerten mit Hilfe von Mehrstellenoperatoren. ZAMP11, 445–454 (1960).Google Scholar
  7. 7.
    Martin, R. S., Reinsch, C., Wilkinson, J. H.: Householder tridiagonalisation of a symmetric matrix. Num. Math.11, 181–195 (1968).Google Scholar
  8. 8.
    Rutishauser, H.: Lineares Gleichungssystem mit symmetrischer positiv definiter Bandmatrix nach Cholesky. Computing1, 77–78 (1966).Google Scholar
  9. 9.
    —— The Jacobi method for real symmetric matrices. Num. Math.9, 1–10 (1966).Google Scholar
  10. 10.
    —— Description ofAlgol 60 (Handbook of automatic computation, Vol. 1 a). Berlin-Heidelberg-New York: Springer 1967Google Scholar
  11. 11.
    —— Computational aspects of F. L. Bauer's simultaneous iteration method. Num. Math.13, 4–13 (1969)Google Scholar
  12. 12.
    Schwarz, H. R.: Matrizen-Numerik. Stuttgart: Teubner 1968.Google Scholar
  13. 13.
    Stuart, G. W.: Accelerating the orthogonal iteration for the eigenvalues of a Hermitian matrix. Num. Math.13, 362–376 (1969).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • H. Rutishauser
    • 1
  1. 1.Eidg. Techn. Hochschule Fachgruppe Computer-WissenschaftenZürich

Personalised recommendations