Algebra and Logic

, Volume 11, Issue 2, pp 94–100 | Cite as

The radical and representations of alternative rings

  • K. A. Zhevlakov


Mathematical Logic Alternative Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. Jacobson, The Structure of Rings, rev. ed., Colloquium Publications (1964).Google Scholar
  2. 2.
    K. A. Zhevlakov, ,“The radical and Neiman ideals,” Algebra i Logika,8, No. 4, 425–439 (1969).Google Scholar
  3. 3.
    K. A. Zhevlakov, ,“Quasiregular ideals in finitely generated alternative rings,” Algebra i Logika,11, No. 2, 140–161 (1972).Google Scholar
  4. 4.
    S. Amitsur, ,“A generalization of Hilbert's Nullstellensatz,” Proc. Amer. Math. Soc.,8, 649–656 (1957).Google Scholar
  5. 5.
    N. Jacobson, ,“The structure of alternative and Jordan bimodules,” Osaka Math. J.,6, 1–71 (1954).Google Scholar
  6. 6.
    E. Kleinfeld, ,“Right alternative rings,” Proc. Amer. Math. Soc.,4, 939–944 (1953).Google Scholar
  7. 7.
    E. Kleinfeld, ,“Primitive alternative rings and semisimplicity,” Amer. J. Math.,77, 725–730 (1955).Google Scholar
  8. 8.
    E. Kleinfeld, ,“Alternative nil rings,” Ann. Math.,66, 395–399 (1957).Google Scholar
  9. 9.
    M. Slater, ,“Nucleus and center in alternative rings,” J. Algebra,7, 372–388 (1967).Google Scholar
  10. 10.
    M. Slater, ,“Prime alternative rings, II,” J. Algebra,15, 244–251 (1970).Google Scholar
  11. 11.
    M. Smiley, ,“The radical of alternative rings,” Ann. Math.,49, 702–709 (1948).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • K. A. Zhevlakov

There are no affiliations available

Personalised recommendations