Algebra and Logic

, Volume 8, Issue 6, pp 396–403 | Cite as

On the weak representability of σ-complete dimension complemented cylindric algebras

  • A. Preller


Mathematical Logic Cylindric Algebra Weak Representability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Henkin, Monk, and Tarski, Cylindric Algebras, North Holland Publ. Co., Amsterdam (in preparation).Google Scholar
  2. 2.
    C. Karp, Languages with Expressions of Infinite Length, North Holland Publ. Co., Amsterdam (1964).Google Scholar
  3. 3.
    E. López-Escobar, “An interpolation theorem for denumerably long formulas,” Fundamenta Mathematicae LVII (1965).Google Scholar
  4. 4.
    A. Preller, La Categorie des Algébres Quantifiées, Publ. Dep. Math. Lyon (1967), T4–1.Google Scholar
  5. 5.
    A. Preller, Logique Algébrique Infinitaire, Centre de Documantation du CNRS, Paris, No. A.0.2672 (1968).Google Scholar
  6. 6.
    A. Preller, Substitution Algebras in Their Relation to Cylindric Algebras, Archiv für Mathematische Logik und Grundlagenforschung, Freiburg (in press).Google Scholar
  7. 7.
    A. Preller, Quantified Algebras, Lecture Notes on Mathematics, Vol. 72, Springer Verlag, Berlin (1968), pp. 182–203.Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • A. Preller

There are no affiliations available

Personalised recommendations