Algebra and Logic

, Volume 9, Issue 4, pp 285–290 | Cite as

On elementary theories of lattices of subgroups

  • M. A. Taitslin


Mathematical Logic Elementary Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. L. Ershov, “On elementary theories of local fields,” Algebra i Logika,4, No. 2, 5–30 (1965).Google Scholar
  2. 2.
    J. Ax and S. Kochen, “Diophantine problems over local fields. II. A complete set of axioms for p-adic number theory,” Amer. J. Math.,87, No. 3, 631–648 (1965).Google Scholar
  3. 3.
    J. Ax, “The elementary theory of finite fields,” Ann. of Math.,88, No. 2, 239–271 (1968).Google Scholar
  4. 4.
    Yu. L. Ershov, “Unsolvability of some fields,” Dokl. Akad. Nauk SSSR,161, No. 1, 27–29 (1965).Google Scholar
  5. 5.
    S. Feferman and R. Vaught, “The first-order properties of algebraic systems,” Fund. Math.,47, 57–103 (1959).Google Scholar
  6. 6.
    Yu. L. Ershov, “On the elementary theory of maximal normed fields II,” Algebra i Logika,5, No. 1, 5–40 (1966).Google Scholar
  7. 7.
    M. A. Taitslin, “On the theory of finite division rings,” Algebra i Logika,4, No. 4, 103–114 (1965).Google Scholar
  8. 8.
    M. I. Kargapolov, Yu. I. Merzlyakov, and V. N. Remeslennikov, “Fundamentals of the theory of groups,” 1, Novosibirsk (1968).Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • M. A. Taitslin

There are no affiliations available

Personalised recommendations