Skip to main content
Log in

Interval stochastic matrices: A combinatorial lemma and the computation of invariant measures of dynamical systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The concept of an interval stochastic matrix\(\widehat{AB}\) is introduced. We prove a combinatorial theorem which describes the network flow associated with an interval matrix. The semi-invariant vectors of\(\widehat{AB}\) are characterized in terms of eigenvectors with unit eigenvalue of stochastic matrices\(C \in \widehat{AB}\). These results are then applied to the approximation and machine computation of invariant measures of dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin, J. P., and Frankowska, H. (1990).Set-Valued Analysis, Birkhäuser, Boston.

    Google Scholar 

  • Blank, M. (1989). Small perturbations of chaotic dynamical systems,Russian Math. Surveys 44, 1–33.

    Google Scholar 

  • Boyarsky, A. (1986). Randomness implies order,J. Math. Anal. Applns. 76, 483–497.

    Google Scholar 

  • Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G. (1982). Ergodic Theory, Springer-Verlag, New York.

    Google Scholar 

  • Diamond, P., Kloeden, P., and Pokrovskii, A. (1994a). An invariant measure arising in computer simulation of a chaotic dynamical system,J. Nonlinear Sciences 4, 59–68.

    Google Scholar 

  • Diamond, P., Kloeden P., and Pokrovskii, A. (1994b). Weakly chain recurrent points and spatial discretizations of dynamical systems,Random & Computational Dynamics 2, 97–110.

    Google Scholar 

  • Diamond, P., Kloeden, P., and Pokrovskii, A. (in press). Analysis of an Algorithm for Computing Invariant Measures,Nonlin. Anal. TMA.

  • Ethier, S., Kurtz, T. (1986).Markov Processes: Characterization and Convergencei, Wiley, New York.

    Google Scholar 

  • Gale, D. (1957). A theorem on flows in networks,Pacific J. Math. 7, 1073–1082.

    Google Scholar 

  • Grötschel, M., Lovász, L., and Schrijver, A. (1988).Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin.

    Google Scholar 

  • Keane, M., and Smorodinsky, M. (1979). Bernoulli schemes of the same entropy are finitarily isomorphic,Ann. Math. 109, 397–406.

    Google Scholar 

  • Kifer, Y. (1988).Random Perturbations of Dynamical Systems, Birkhäuser, Boston.

    Google Scholar 

  • Krylov, N., and Bogolioubov, N. (1937). La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non-linéaire,Ann. Math. 38, 65–113.

    Google Scholar 

  • Parthasarathy, K. R. (1967).Probability Measures on Metric Spaces, Academic Press, New York and London.

    Google Scholar 

  • Ruelle, D. (1981). Small random perturbations of dynamical systems and the definition of attractors,Commun. Math. Phys.,82, 137–151.

    Google Scholar 

  • Stetter, H. J. (1976).Analysis of Discretization Methods for Ordinary Differential Equations, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Funded under Australian Research Council Grant A 8913 2609.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamond, P., Kloeden, P. & Pokrovskii, A. Interval stochastic matrices: A combinatorial lemma and the computation of invariant measures of dynamical systems. J Dyn Diff Equat 7, 341–364 (1995). https://doi.org/10.1007/BF02219360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02219360

Key words

AMS subject classifications

Navigation