Skip to main content
Log in

Chaos and integrability in a nonlinear wave equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider the parametrized family of equations tt ,u-∂ xx u-au+∥u 2 u=O,x∃(0,πL), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with “chaotic” dynamics, provided that α=2, 3, 4,.... For α=1 we prove the existence of infinitely many first integrals pairwise in involution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. I. (1989).Mathematical Methods of Classical Mechanics, Springer-Verlag, New York.

    Google Scholar 

  • Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I. (1988).Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Math Sciences Vol. 3, Springer-Verlag, New York.

    Google Scholar 

  • Cazenave, T., and Weissler, F. B. (1992). Asymptotic periodic solutions for a class of nonlinear coupled oscillators.Portugaliae Math. (in press).

  • Cazenave, T., Haraux, A., and Weissler, F. B. (1993a). Detailed asymptotics for a convex Hamiltonian system with two degrees of freedom.J. Dynam. Diff. Eq. 5, 155–187.

    Google Scholar 

  • Cazenave, T., Haraux, A., and Weissler, F. B. (1993b). A class of nonlinear completely integrable abstract wave equations.J. Dynam. Diff. Eq. 5, 129–154.

    Google Scholar 

  • Forest, M. G., and McLaughlin, D. W. (1982). Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint.J. Math. Phys. 23, 1248–1277.

    Google Scholar 

  • Grotta Ragazzo, C. (1993). Nonintegrability of some Hamiltonian systems, scattering and analytic continuation.Comm. Math. Phys. (in press).

  • Grotta Ragazzo, C., Koiller, J., and Oliva, W. M. (1992). Motion of massive vortices in two dimensions.J. Nonlinear Sc. (in press).

  • Guckenheimer, J., and Holmes, P. (1990).Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.

    Google Scholar 

  • Jaworski, M. (1990). Cauchy problem for the sine-Gordon equation with periodic initial conditions. In Degasperis, A., Fordy, A. P., and Lakshmanan, M. (eds.), “Nonlinear Evolution Equations: Integrability and Spectral Methods,” Manchester University Press, Manchester, UK.

    Google Scholar 

  • Lerman, L. M. (1991). Hamiltonian systems with loops of a separatrix of a saddle-center.Selecta Math. Sov. 10, 297–306. (Originally published inMetody kachestvennoi teorii differentsial'nykh uravnenii, Gorkii State University, 1987, pp. 89–103.)

    Google Scholar 

  • McKean, H. P. (1981). The sine-Gordon and sinh-Gordon equation on the circle.Comm. Pure Appl. Math. 34, 197–257.

    Google Scholar 

  • Mielke, A., Holmes, P., and O'Reilly, O. (1992). Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle center.J. Dynam. Diff. Eq. 4, 95–126.

    Google Scholar 

  • Mikhailov, A. V., Shabat, A. B., and Sokolov, V. V. (1991). The symmetry approach to classification of integrable systems. In Zakharov, V. E. (ed.).What is Integrability? Springer-Verlag, Berlin, pp. 115–184.

    Google Scholar 

  • Moser, J. (1958). On the generalization of a theorem of Liapunoff.Comm. Pure Appl. Math. 11, 257–271.

    Google Scholar 

  • Moser, J. (1973).Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Moser, J. (1980). Various aspects of integrable systems. In Coates, J., and Helgason, S. (eds.),Progress in Mathematics 8, Birkhauser, Boston, pp. 233–289.

    Google Scholar 

  • Morse, P. M., and Feshbach, H. (1953).Methods of Theoretical Physics, Vol. 2, McGraw-Hill, New York.

    Google Scholar 

  • Novikov, S., Manakov, S. V., Pitaevskii, L. P., and Zakharov, V. E. (1984).Theory of Solitons, Consultants Bureau, New York.

    Google Scholar 

  • Rüssmann, H. (1964). Uber das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nahe einer Gleichgewichtslosung.Math. Ann. 154, 285–300.

    Google Scholar 

  • Smale, S. (1967). Differentiable dynamical systems.Bull. Am. Math. Soc. 73, 747–817.

    Google Scholar 

  • Whitham, G. B. (1974).Linear and Nonlinear Waves, John Wiley & Sons, New York.

    Google Scholar 

  • Zakharov, V. E. (ed.) (1991).What is Integrability? Springer-Verlag, Berlin.

    Google Scholar 

  • Zhiber, A. V., and Shabat, A. B. (1979). Klein-Gordon equations with a nontrivial group.Sov. Phys. Dokl. 24, 607–609.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotta Ragazzo, C. Chaos and integrability in a nonlinear wave equation. J Dyn Diff Equat 6, 227–244 (1994). https://doi.org/10.1007/BF02219194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02219194

Key words

AMS subject classifications

Navigation