Algebra and Logic

, Volume 11, Issue 1, pp 33–50 | Cite as

Subalgebras of a free lie sum of lie algebras with an amalgamated subalgebra

  • G. P. Kukin
Article

Keywords

Mathematical Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. I. Shirshov, "On a hypothesis of the theory of Lie algebras," Sibirsk. Matem. Zh.,3, No. 2, 297–301 (1962).Google Scholar
  2. 2.
    A. G. Kurosh, "Nonassociative free algebras and free products of algebras," Matem. Sb.,20, No. 2, 239–262 (1947).Google Scholar
  3. 3.
    A. T. Gainov, "Commutative free and anticommutative free products of algebras," Sibirsk. Matem. Zh.,3, No. 6, 805–833 (1962).Google Scholar
  4. 4.
    A. I. Shirshov, "Subalgebras of free Lie algebras," Matem. Sb.,33, No. 2, 441–452 (1953).Google Scholar
  5. 5.
    E. Witt, "Die Unterringe der freien Lieschen Ringe," Math. Z.,64, No. 2, 195–216 (1956).CrossRefGoogle Scholar
  6. 6.
    A. I. Shirshov, "On free Lie rings," Matem. Sb.,45, No. 2, 113–122 (1958).Google Scholar
  7. 7.
    A. I. Shirshov, "Some algorithmic problems for Lie algebras," Sibirsk. Matem. Zh.,3, No. 2, 292–296 (1962).Google Scholar
  8. 8.
    D. I. Eidel'kind, "Verbal products of Magnus groups," Matem. Sb.,85, No. 4, 504–526 (1971).Google Scholar
  9. 9.
    G. P. Kukin, "A Cartesian subalgebra of a free Lie sum of Lie algebras," Algebra i Logika,9, No. 6, 701–713 (1970).Google Scholar
  10. 10.
    P. M. Cohn, Universal Algebra, Harper and Row, New York (1965).Google Scholar
  11. 11.
    Dnestr Notebook (Unsolved Problems of the Theory of Rings and Modules), Kishinev (1969).Google Scholar
  12. 12.
    Ts. E. Dididze, "Free nonassociative sums of algebras with an amalgamated subalgebra," Matem. Sb.,43, No. 3, 379–396 (1957).Google Scholar
  13. 13.
    Ts. E. Dididze, "Subalgebras of free nonassociative sums of algebras with an amalgamated subalgebra," Matem. Sb.,54, No. 3, 381–384 (1961).Google Scholar
  14. 14.
    G. P. Kukin, "Subalgebras of a free product of Lie algebras," in: Eleventh All-Union Algebra Colloquium (Abstracts of Communications and Reports), 148, Kishinev (1971).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • G. P. Kukin

There are no affiliations available

Personalised recommendations