Skip to main content
Log in

GenericS 1-equivariant vector fields

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abraham, R., and Robbin, J. (1967).Transversal Mappings and Flows, W. A. Benjamin, New York.

    Google Scholar 

  2. Alexander, J. C., and Yorke, J. A. (1978). Global bifurcation of periodic orbits.Am. J. Math. 100, 263–292.

    Google Scholar 

  3. Alligood, K. T., and Mallet-Paret, J. (1981). Families of periodic orbits: Local continuability does not imply global continuability.J. Diff. Geom. 16, 483–492.

    Google Scholar 

  4. Chow, S. N., and Mallet-Paret, J. (1978). Global Hopf bifurcation from a multiple eigen-value.Nonlinear Anal. Theory Meth. Appl. 2, 753–763.

    Google Scholar 

  5. Fiedler, B. (1985). An index for global Hopf bifurcation in parabolic systems.J. Reine Angew. Math. 259, 1–36.

    Google Scholar 

  6. Ize, J. (1985). Obstruction theory and multiparameter Hopf bifurcation.Trans. Am. Math. Soc. 289, 757–792.

    Google Scholar 

  7. Ize, J. (1979). Periodic solutions of nonlinear parabolic equations.Common. P.D.E. 12, 1299–1387.

    Google Scholar 

  8. Ize, J. (1982). Introduction to bifurcation theory. InDifferential Equations, Proc. Sao Paulo 1981, Lecture Notes in Math 957, Springer-Verlag, Berlin, Heidelberg, New York, pp. 145–20Z

    Google Scholar 

  9. Ize, J. Masabo, I., Vignoli, A. (1986). Global results on continuation and bifurcation for equivariant maps. InNonlinear Functional Analysis and Its Applications (Proc. NATO Advanced Study Institute, Maratea, Italy, 1985), Math. Phys. Sciences, Vol. 173, Reidel, Dordrecht, Holland, pp. 74–111.

    Google Scholar 

  10. Ize, J., Massabo, I., and Vignoli, A. (1989). Degree theory for equivariant maps. I.Trans. Am. Math. Soc. 315, 433–510.

    Google Scholar 

  11. Ize, J., Massabo, I., and Vignoli, A. (1990). Degree theory for equivariant maps. II. The generalS 1-action. Preprint (to appear inTrans. Am. Math. Soc.).

  12. Kielhöfer, H. (1992). Hopf bifurcation from a differentiable viewpoint.J. Diff. Eq. 97, 189–232.

    Google Scholar 

  13. Kielhöfer, H. (1985). Multiple eigenvalue bifurcation for Fredholm operators.J. Reine Angew. Math. 358, 104–124.

    Google Scholar 

  14. Kielhöfer, H. (1986). Interaction of periodic and stationary bifurcation from multiple eigenvalues.Math. Z. 192, 159–166.

    Google Scholar 

  15. Kielhöfer, H. (1979). Hopf bifurcation at multiple eigenvalues.Arch. Rat. Mech Anal. 69, 53–83.

    Google Scholar 

  16. Kielhöfer, H. (1974). Stability and semilinear evoluation equations in Hilbert space.Arch. Rat. Mech. Anal. 57, 150–165.

    Google Scholar 

  17. Lasota, A., and Yorke, J. A. (1971). Bounds for periodic solutions of differential equations in Banach spaces.J. Diff. Eq. 10, 83–91.

    Google Scholar 

  18. Mallet-Paret, J., and Yorke, J. A. (1982). Snakes: Oriented families of periodic orbits, their sources, sinks, and continuation.J. Diff. Eq. 43, 419–450.

    Google Scholar 

  19. Whyburn, G. T. (1968).Topological Analysis, Princeton University Press, Princeton, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kielhöfer, H. GenericS 1-equivariant vector fields. J Dyn Diff Equat 6, 277–300 (1994). https://doi.org/10.1007/BF02218531

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02218531

Key words

Navigation