The role of quinate and shikimate in the metabolism of lactobacilli

Abstract

The metabolism of (−)-quinate and shikimate by one heterofermentative strain,Łactobacillus pastorianus, and by one homofermentative strain,Lactobacillus plantarum, has been studied using growing and washed cells. Both organisms reduced quinate and shikimate under anaerobic conditions in the presence of suitable hydrogen donors including fructose, glucose andd(−) andl(+)-lactates. The end-product ofL.pastorianus metabolism was dihydroshikimate butL.plantarum carried the reduction a stage further tocis-3,4-dihydroxycyclohexanecarboxylate and formed, simultaneously, catechol. The enzymes involved in these reductions are induced; their importance in the metabolism of lactobacilli is discussed.

This is a preview of subscription content, access via your institution.

References

  1. Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. - J. Biol. Chem.118:531–537.

    Google Scholar 

  2. Cánovas, J. L., Wheelis, M. L. andStanier, R. Y. 1968. Regulation of the enzymes of the β-ketoadipate pathway inMoraxella calcoacetica. 2. The role of protocatechuate as inducer. - European J. Biochem.3:293–304.

    Article  Google Scholar 

  3. Carr, J. G. 1953. The lactic acid bacteria of cider: 1. Some organisms responsible for the malo-lactic fermentation. - Ann. Rep. Long Ashton Res. Stn for1952:144–150.

    Google Scholar 

  4. Carr, J. G., Pollard, A., Whiting, G. C. andWilliams, A. H. 1957. The reduction of quinic acid to dihydroshikimic acid by certain lactic acid bacteria. - Biochem. J.66:283–285.

    PubMed  Google Scholar 

  5. Chakravorty, M. 1965. Mannitol-1-phosphate dehydrogenase from the extracts ofLactobacillus plantarum. - Biochim. Biophys. Acta105:374–377.

    PubMed  Google Scholar 

  6. De Ley, J. 1962. Comparative biochemistry and enzymology in bacterial classification, p.164–195.In Microbial classification. Soc. of General Microbiol. Symp. No.12. - University Press, Cambridge.

    Google Scholar 

  7. Gaitonde, M. K. andGordon, M. W. 1958. A microchemical method for the detection and determination of shikimic acid. - J. Biol. Chem.230:1043–1050.

    PubMed  Google Scholar 

  8. Grant, D. J. W. andPatel, J. C. 1969. The non-oxidative decarboxylation ofp-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid byKlebsiella aerogenes (Aerobacter aerogenes). - Antonie van Leeuwenhoek35:325–343.

    Article  PubMed  Google Scholar 

  9. Grewe, R. undJeschke, J. P. 1956. Die Synthese der 5-Dehydrochinasäure. - Chem. Ber.89:2080–2088.

    Google Scholar 

  10. Gross, S. R. 1958. The enzymatic conversion of 5-dehydroshikimic acid to protocatechuic acid. - J. Biol. Chem.233:1146–1151.

    PubMed  Google Scholar 

  11. Heyns, K. andGottschalk, H. 1961. Über katalytische Oxydationen, XV. Katalytische Oxydation von Chinasäure und Shikimisäure. - Chem. Ber.94:343–348.

    Google Scholar 

  12. London, J. 1968. Regulation and function of lactate oxidation inStreptococcus faecium. - J. Bacteriol.95:1380–1387.

    PubMed  Google Scholar 

  13. Mitsuhashi, S. andDavis, B. D. 1954. Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. - Biochim. Biophys. Acta15:268–280.

    Article  PubMed  Google Scholar 

  14. Roe, J. H., Epstein, J. H. andGoldstein, N. P. 1949. A photometric method for the determination of inulin in plasma and urine. - J. Biol. Chem.178:839–845.

    Google Scholar 

  15. Stanier, R. Y. 1947. Simultaneous adaptation: A new technique for the study of metabolic pathways. - J. Bacteriol.54:339–348.

    Google Scholar 

  16. Stark, J. B., Goodban, A. E. andOwens, H. S. 1951. Paper chromatography of organic acids. - Analyt. Chem.23:413–415.

    Article  Google Scholar 

  17. Strittmatter, C. F. 1959. Electron transport to oxygen in lactobacilli. - J. Biol. Chem.234:2789–2793.

    PubMed  Google Scholar 

  18. Umbreit, W. W., Burris, R. H. andStauffer, J. F. 1964. Manometric Techniques. 4th ed. - Burgess Publishing Company, Minneapolis.

    Google Scholar 

  19. Whiting, G. C. 1958. The non-volatile organic acids of some berry fruits. - J. Sci. Food Agr.9:244–248.

    Google Scholar 

  20. Whiting, G. C. 1964. Die Rohstoffe des Pflanzenreichs, Vol.3, Organic acids, 5th ed., C. Regel (ed.). - J. Cramer, Weinheim.

    Google Scholar 

  21. Whiting, G. C. andCoggins, R. A. 1967. The oxidation ofd-quinate and related acids byAcetomonas oxydans. - Biochem. J.102:283–293.

    PubMed  Google Scholar 

  22. Whiting, G. C. andCoggins, R. A. 1969. Quinate metabolism by lactobacilli. - Biochem. J.115:60P-61P.

    Google Scholar 

  23. Whittenbury, R. 1963. The use of soft agar in the study of conditions affecting the utilization of fermentable substrates by lactic acid bacteria. - J. Gen. Microbiol.32:375–384.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whiting, G.C., Coggins, R.A. The role of quinate and shikimate in the metabolism of lactobacilli. Antonie van Leeuwenhoek 37, 33–49 (1971). https://doi.org/10.1007/BF02218465

Download citation

Keywords

  • Hydrogen
  • Glucose
  • Lactate
  • Fructose
  • Lactobacillus