BIT Numerical Mathematics

, Volume 23, Issue 2, pp 248–257 | Cite as

Thel p -solution of the nonlinear matrix equationXY=A

  • K. Zietak
Part II Numerical Mathematics


In this paper we consider a nonlinear matrix equationXY=A connected with the discretelp-approximation of a two-variable function by means of sums of products of functions of one variable. We present a description of the stationary points and an algorithm which utilizes the particular matrix form of this problem. Some numerical examples are given.

AMS classification

65D15 65H10 

CR categories

5.13 5.15 

Keywords and phrases

discretelp-approximation overdetermined system of nonlinear equations lp-solution stationary point algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Cheney,Introduction to Approximation Theory, McGraw-Hill, New York, 1966.Google Scholar
  2. 2.
    H. Ekblom,Calculation of linear best l p-approximations, BIT 13 (1973), 292–300.Google Scholar
  3. 3.
    R. Fletcher, J. A. Grant and M. D. Hebden,The calculation of linear best l p-approximations, Computer J. 14 (1971), 276–279.Google Scholar
  4. 4.
    G. H. Golub,Least squares, singular values and matrix approximations, Aplikace Matematiky 13 (1968), 44–51.Google Scholar
  5. 5.
    S. W. Kahng,Best L p-approximation, Math. Comp. 26 (1972), 505–508.Google Scholar
  6. 6.
    G. Merle and H. Späth,Computational experiences with discrete l p-approximation, Computing 12 (1974), 315–321.Google Scholar
  7. 7.
    M. R. Osborne and G. A. Watson,Nonlinear approximation problems in vector norms, in:Numerical Analysis (ed. G. A. Watson), Springer-Verlag, 1978.Google Scholar
  8. 8.
    G. Peters and J. H. Wilkinson,The least squares problem and pseudoinverses, Comput. J. 13 (1970), 309–316.Google Scholar
  9. 9.
    C. Radhakrishna Rao,Matrix approximations and reduction of dimensionality in multivariate statistical analysis, in:Multivariate Analysis V (ed. P. R. Krishnaiah), North-Holland Publishing Company, 1980.Google Scholar
  10. 10.
    H. Späth,Algorithmen für multivariable Ausgleichsmodelle, R. Oldenburg-Verlag, München, 1974.Google Scholar
  11. 11.
    G. A. Watson,Approximation Theory and Numerical Methods, John Wiley and Sons, London, 1980.Google Scholar
  12. 12.
    J. H. Wilkinson and C. Reinsch,Handbook for Automatic Computation, Linear Algebra, Springer-Verlag, Berlin, 1971.Google Scholar
  13. 13.
    K. Zietak,The properties of the minimax solution of the nonlinear matrix equation XY =A. (submitted to IMA J. Num. Anal.)Google Scholar
  14. 14.
    K. Zietak,The Chebyshev approximation of a rectangular matrix by matrices of smaller rank as the limit of l p-approximation, Report Nr N-113, Institute of Computer Science, University of Wrocław (1982), Wrocław, Poland.Google Scholar

Copyright information

© BIT Foundations 1983

Authors and Affiliations

  • K. Zietak
    • 1
  1. 1.Institute of Computer ScienceUniversity of WroclawWrocławPoland

Personalised recommendations