Chlorine and bromine contents in tobacco and tobacco smoke

  • E. Häsänen
  • P. K. G. Manninen
  • K. Himberg
  • V. Väätäinen


The chlorine and bromine contents in tobacco and tobacco smoke in both the particulate and gaseous phases were studied by neutronactivation analysis. Methyl chloride and methyl bromide concentrations were measured in the gaseous phase by gas-liquid chromatography — mass spectrometry. The chlorine and bromine contents in nine brands of cigarettes were on the average as follows: Tobacco—6600 ppm chlorine and 110 ppm bromine. Cigarette smoke, particulate phase—68 μg chlorine and 1 μg bromine per cigarette. Cigarette smoke, gaseous phase—90 μg chlorine and 5 μg bromine per cigarette. In the gaseous phase methyl chloride accounted for 60% of the total chlorine and methyl bromine for 80% of the total bromine.


Methyl Mass Spectrometry Bromide Gaseous Phase Chlorine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tobacco Smoking. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Volume 38, Lyon, 1987, pp. 83–126.Google Scholar
  2. 2.
    V.J. Feron, P.J. Groenen, Fl. de Vrijer, Evaluation of the Effects on Health from Tar, Nicotine and Other Noxious Constituents of Tobacco Smoke. Central Institute for Nutrition and Food Research /TNO/, Report No. R 6193. Zeist, Netherlands, 1980.Google Scholar
  3. 3.
    L. Fishbein, Halocarbons in Indoor Environments. In Environmental Carcinogens—Selected Methods of Analysis. Vol. 7—Some Volatile Halogenated Hydrocarbons. /Ed. L. Fishbein, I.K. O'Neill./ IARC Publ. No. 68, Lyon 1985, pp. 91–106.Google Scholar
  4. 4.
    R.J. Philippe, M.E. Hobbs,Anal. Chem., 28 /1956/ 2002.CrossRefGoogle Scholar
  5. 5.
    G. Eklund, J.R. Pedersen, B. Stromberg,Chemosphere, 17 /1988/ 575.CrossRefGoogle Scholar
  6. 6.
    R.W. Jenkins, R.H. Newman, G.F. Lester, A.F. Frisch, T.G. Williamson,Beitr. Tabakforsch., 11 /1982/ 195.Google Scholar
  7. 7.
    F.F. Guthrie,Beitr. Tabakforsch., 4 /1968/ 229.Google Scholar
  8. 8.
    H.J.M. Bowen, Environmental Chemistry of the Elements. Academic Press, London, 1979, p. 242.Google Scholar
  9. 9.
    H.A. Sloot van der, P. Hoede, J. Zonderhuis, C. Meijer, Preparation of Very Pure Active Carbon, Netherlands Energy Research Foundation, ECN 80, 1980, p. 8.Google Scholar
  10. 10.
    R.A. Nadkarni, W.D. Ehmann,Radiochem. Radioanal. Lett., 2 /1969/ 161.Google Scholar
  11. 11.
    R.W. Jenkins, R.H. Newman, R.M. Ikeda, R.D. Carpenter,Anal. Lett., 4 /1971/ 451.Google Scholar
  12. 12.
    S. Ahmad, M.S. Chaudry, I.H. Qureshi,J. Radioanal. Chem., 54 /1979/ 331.Google Scholar
  13. 13.
    F.Y. Iskander, T.L. Bauer, D.E. Klein,Analyst, 111 /1986/ 107.CrossRefPubMedGoogle Scholar
  14. 14.
    R.R. Baker,Nature, 247 /1974/ 405.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • E. Häsänen
    • 1
  • P. K. G. Manninen
    • 1
  • K. Himberg
    • 2
  • V. Väätäinen
    • 2
  1. 1.Reactor LaboratoryTechnical Research Centre of FinlandEspooFinland
  2. 2.Food Research LaboratoryTechnical Research Centre of FinlandEspooFinland

Personalised recommendations