Algebra and Logic

, Volume 10, Issue 1, pp 58–65 | Cite as

Finite-dimensional algebras with a nil-basis

  • I. P. Shestakov


Mathematical Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. Bourbaki, Elements de Mathematique. VII: Premiere Partie. Les Structures Fondamentales de l'Analyse. Livre II. Algebre. Ch. III. Algebre Multilineaire, Hermann et Cie., Paris (1948).Google Scholar
  2. 2.
    G. V. Dorofeev, “On the nilpotency of right-alternative rings,” Algebra i Logika,9, No. 3, 302–305 (1970).Google Scholar
  3. 3.
    A. I. Shirshov, “On certain nonassociative rings and algebraic algebras,” Mat. Sb.,41, No. 3, 381–394 (1957).Google Scholar
  4. 4.
    A. A. Albert, “A structure theory for Jordan algebras,” Ann. of Math.,48, 546–567 (1947).Google Scholar
  5. 5.
    R. E. Block, “A unification of the theories of Jordan and alternative algebras,” Notices, Amer. Math. Soc.,16, No. 5, Abstr., 667–160.Google Scholar
  6. 6.
    B. Brown and N. McCoy, “Prime ideals in nonassociative rings,” Trans. Amer. Math. Soc.,89, 245–255 (1958).Google Scholar
  7. 7.
    N. Jacobson, Structure and Representations of Jordan Algebras.Google Scholar
  8. 8.
    L. A. Kokoris, “Simple power associative algebras of degree two,” Ann. of Math.,64, 544–550 (1956).Google Scholar
  9. 9.
    R. D. Schafer, “Generalized standard algebras,” J. of Algebra,12, 386–417 (1969).Google Scholar
  10. 10.
    A. Thedy, “Zum Wedderburnischen Zerlegungssatz,” Math. Z.,113, 173–195 (1970).Google Scholar
  11. 11.
    M. Zorn, “Theorie der alternativen Ringe,” Abh. Math. Sem. Univ. Hambur.,8, 123–147 (1930).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • I. P. Shestakov

There are no affiliations available

Personalised recommendations