Advertisement

Annals of Operations Research

, Volume 24, Issue 1, pp 9–28 | Cite as

On Rosen's gradient projection methods

  • D. -Z. Du
  • F. Wu
  • X. -S. Zhang
Surveys

Abstract

This paper is a survey of Rosen's projection methods in nonlinear programming. Through the discussion of previous works, we propose some interesting questions for further research, and also present some new results about the questions.

Keywords

Rosen Nonlinear Programming Projection Method Gradient Projection Gradient Projection Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Avriel,Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, NJ, 1986).Google Scholar
  2. [2]
    M.S. Bazaraa and C.M. Shetty,Nonlinear Programming: Theory and Algorithms (Wiley, New York, 1979).Google Scholar
  3. [3]
    D.-Z. Du, A modification of Rosen-Polak's algorithm, Kexue Tonbao 28(1983)301–305, in Chinese.Google Scholar
  4. [4]
    D.-Z. Du and X.-S. Zhang, A convergence theorem for Rosen's gradient projection method, Math. Progr. 36(1986)135–144.Google Scholar
  5. [5]
    D.-Z. Du and X.-S. Zhang, Global convergence of Rosen's gradient projection method, Math. Progr. 44(1989)357–366.Google Scholar
  6. [6]
    D.-Z. Du, Remarks on the convergence of Rosen's gradient projection method, Acta Math. Appl. Sinica (English Series) 3(1987)270–279.Google Scholar
  7. [7]
    D.-Z. Du, J. Sun and T.-T. Song, A counterexample for Rosen's gradient projection method, Mathematical Report, Institute of Applied Mathematics, Beijing (1980), in Chinese.Google Scholar
  8. [8]
    D.-Z. Du and X.-S. Zhang, Notes on a new gradient projection method, Syst. Sci. Math. Sci. 2 (2) (1989)184–192.Google Scholar
  9. [9]
    D.-Z. Du, A gradient projection method for convex programming with nonlinear constraints, Acta. Math. Appl. Sinica 8(1985)7–16, in Chinese.Google Scholar
  10. [10]
    D. Goldfarb, Extension of Davidon's variable metric method to maximization under linear inequality and equality constraints, SIAM J. Appl. Math. 17(1969)739–764.Google Scholar
  11. [11]
    D. Goldfarb and L. Lapidus, Conjugate gradient method for nonlinear programming problems with linear constraints, Industr. Engin. Chem. Fundamentals 7(1968)142–151.Google Scholar
  12. [12]
    X.-Y. Gui and D.-Z. Du, A superlinearly convergent method to the linearly contrained optimization problem under degeneracy, Acta Math. Appl. Sinica (English Series) 1(1984)76–84.Google Scholar
  13. [13]
    G.-Z. He, Proof for convergence of Rosen's gradient projection method, Technical Report, Chengdu University of Technology and Science (1986), in Chinese.Google Scholar
  14. [14]
    H.-Y. Kwei (Gui), F. Wu and Y.-L. Lai, Extension of a variable metric algorithm to a linearly constrained optimization problem — a variation of Goldfarb's algorithm, in:Operations Research 1978, ed. K.B. Haley (North-Holland, 1979).Google Scholar
  15. [15]
    Y.-L. Lai, An algorithm and its convergence for nonlinear constrained convex programming, Acta Math. Sinica 3(1980)332–331, in Chinese.Google Scholar
  16. [16]
    D.G. Luenberger,Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1973).Google Scholar
  17. [17]
    E. Polak, On the convergence of optimization algorithms, Rev. Française d'Informatique et de Recherche Operationelle 3(1969)17–34.Google Scholar
  18. [18]
    E. Polak,Computational Methods in Optimization (Academic Press, New York, 1971).Google Scholar
  19. [19]
    K. Ritter, Convergence and superlinear convergence of algorithms for linearly constrained minimization problems, in:Nonlinear Optimization: Theory and Algorithms, Part 2, ed. L.C.W. Dixon, E. Spedicado and G.P. Szegö (1980).Google Scholar
  20. [20]
    J.B. Rosen, The gradient projection method for nonlinear programming, Part 1: Linear constraints, SIAM J. Appl. Math. 8(1960)181–217.Google Scholar
  21. [21]
    J.B. Rosen, The gradient projection method for nonlinear programming, Part 2: Nonlinear constraints, SIAM J. Appl. Math. 9(1961)514–553.Google Scholar
  22. [22]
    M. Yue and J. Han, A new reduced gradient method, Scientia Sinica 22(1979)1099–1113.Google Scholar
  23. [23]
    X.-S. Zhang, An improved Rosen-Polak method, Acta Math. Appl. Sinica 2(1979)257–267, in Chinese.Google Scholar
  24. [24]
    X.-S. Zhang, Discussion on Polak's algorithm of nonlinear programming, Acta Math. Appl. Sinica 4(1981)1–13, in Chinese.Google Scholar
  25. [25]
    X.-S. Zhang, On the convergence of Rosen's gradient projection method, Acta Math. Appl. Sinica 8(1985)125–128, in Chinese. [Acta Math. Appl. Sinica (English Series) 3(1987)280–288].Google Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1990

Authors and Affiliations

  • D. -Z. Du
    • 1
  • F. Wu
    • 1
  • X. -S. Zhang
    • 1
  1. 1.Institute of Applied MathematicsAcademia SinicaBeijingP.R. China

Personalised recommendations