Journal of Assisted Reproduction and Genetics

, Volume 11, Issue 10, pp 515–529 | Cite as

Light and electron microscopic analysis of bovine embryos derived byin Vitro andin Vivo fertilization

  • L. Plante
  • W. A. King
Animal Investigations



The aim of this study was to examine the morphological features of in vitrofertilization-derived bovine embryos (IVt) and compare them with those of in vivofertilization-derived (IVv) ones.


Light microscopy showed the blastomeres of IVv embryos to have a tendency to be rounder up to the 16-cell stage and to form a more compact mass at the morula stage than in their IVt counterparts. Electron microscopy revealed that as development progressed, some structures (such as microvilli, phagosomes/lysosomes, intercellular junctions and intermediate filaments) appeared or reappeared while others (such as lipid droplets, vesicles with flocculent materials, cortical granules, nuclear annulate lamellae, nuclear envelope blebs) decreased or disappeared. These changes were observed about one cell stage later in IVt than in IVv embryos. Other structures were present in both IVt and IVv embryos, and they morphologically either changed (such as mitochondria, endoplasmic reticulum, Golgi apparatus and nucleoli) or did not change (cytoplasmic annulate lamellae). In contrast to previous reports, vacuolated nucleoli in both IVt and IVv embryos were observed from the two-cell stage.


It was concluded that (I) the development of bovine embryos to the blastocyst stage is like that of other mammalian embryos; (2) IVt and IVv embryos did not show consistent differences in morphological features; (3) although IVt embryos appear delayed in development, this may reflect different definition of age in vivoand in vitro.

Key words

in vitro fertilization in vivo fertilization bovine, embryo microscopy ultrastructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Betteridge KJ, Fléchon J-E: The anatomy and physiology of pre-attachment bovine embryos. Theriogenology 1988;29:155–187Google Scholar
  2. 2.
    van Blerkom J, Bell H, Weipz D: Cellular and developmental biological aspects of bovine meiotic maturation, fertilization, and preimplantation embryogenesis in vitro. J Electron Microsc Tech 1990;16:298–323PubMedGoogle Scholar
  3. 3.
    McLaren A: The embryo.In Reproduction in Mammals, Vol 2, Austin CR, Short RV (eds). Second edition. Cambridge; Cambridge University Press, 1982, pp 1–25Google Scholar
  4. 4.
    Heyman Y, Ménézo Y: Interaction of trophoblastic vesicles with bovine embryos developing in vitro.In The Mammalian Preimplantation Embryo. Regulation of growth and differentiation in vitro, Bavister BD (ed). New York, Plenum Press, 1987, pp 175–191Google Scholar
  5. 5.
    van Soom A, de Kruif A: A comparative study of in vivo and in vitro derived bovine embryos. Proceedings of 12th International Congress on Animal Reproduction. The Hague, The Netherlands, 1992, pp 1363–1365Google Scholar
  6. 6.
    Kauffold P, Thamm I: Zustandsbeurteilung von rinderembryonen. Dummerstorf: Forschungszentrum für Tierproduktion. DDR, 1985, p 9Google Scholar
  7. 7.
    Viuff D, Avery B, Hyttel P, Greve T: Onset of RNA synthesis in bovine embryos produced in vitro. Theriogenology 1992;37:315 (Abstr)Google Scholar
  8. 8.
    Viuff D, Avery B, Hyttel P, Greve T: Onset of RNA synthesis in bovine embryos produced in vitro. Proceedings of 12th International Congress on Animal Reproduction. The Hague, The Netherlands, 1992 pp 1369–1371Google Scholar
  9. 9.
    Plante L, King WA: Developmental potential of spontaneously activated bovine oocytes. Theriogenology 1993;39:286 (Abstr)Google Scholar
  10. 10.
    Plante L, Plante C, Shepherd DL, King WA: Cleavage and3H-uridine incorporation in bovine embryos of high in vitro developmental potential. Mol Reprod Dev 1994;39:375–383PubMedGoogle Scholar
  11. 11.
    Barnes FL, First NL: Embryonic transcription in in vitro cultured bovine embryos. Mol Reprod Dev 1991;29:117–123PubMedGoogle Scholar
  12. 12.
    Frei RE, Schultz GA, Church RB: Qualitative and quantitative changes in protein synthesis occur at the 8–16 cell stage of embryogenesis in the cow. J Reprod Fertil 1989;86:637–641PubMedGoogle Scholar
  13. 13.
    Rieger D: Relationships between energy metabolism and development of early mammalian embryos. Theriogenology 1992;37:75–93Google Scholar
  14. 14.
    Prather RS, First NL: Cell-to-cell coupling in early-stage bovine embryos: a preliminary report. Theriogenology 1993; 39:561–567Google Scholar
  15. 15.
    Brackett BG, Oh YK, Evans JF, Donawick WJ: Fertilization and early development of cow ova. Biol Reprod 1980;23:189–205PubMedGoogle Scholar
  16. 16.
    Mohr LR, Trounson AO: Structural changes associated with freezing of bovine embryos. Biol Reprod 1981;25:1009–1025PubMedGoogle Scholar
  17. 17.
    Shamsuddin M, Larsson B, Gustafsson H, Gustari S, Bartolome J, Rodriguez-Martinez H: Comparative morphological evaluation of in vivo and in vitro produced bovine embryos. Proc 12th International Congress on Animal Reproduction. The Hague, The Netherlands, 1992, pp 1333–1335Google Scholar
  18. 18.
    Smith R, McLaren A: Factors affecting the time of formation of the mouse blastocoele. J Embryol Exp Morphol 1977;41: 79–92PubMedGoogle Scholar
  19. 19.
    Streffer C, van Beuningen D, Molls M, Zamboblou N, Schultz S: Kinetics of cell proliferation in the pre-implanted mouse embryo in vivo and in vitro. Cell Tissue Kinet 1980; 13:135–143PubMedGoogle Scholar
  20. 20.
    Papaioannou VE, Ebert KM: Development of fertilized embryos transferred to oviducts of immature mice. J Reprod Fertil 1986;76:603–608PubMedGoogle Scholar
  21. 21.
    Hegele-Hartung C, Fischer B, Beier H: Development of preimplantation rabbit embryos after in-vitro culture and embryo transfer: an electron microscopic study. Anat Rec 1988;220:31–42PubMedGoogle Scholar
  22. 22.
    Kiessling AA, Davis HW, Williams CS, Sauter RW, Harrison LW: Development and DNA polymerase activities in cultured preimplantation mouse embryos: comparison with embryos developed in vivo. J Exp Zool 1991;258:34–47PubMedGoogle Scholar
  23. 23.
    Papaioannou VE, Ebert KM: The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development 1988;102:793–803PubMedGoogle Scholar
  24. 24.
    Evsikov SV, Morozova LM, Solomko AP: The role of the nucleocytoplasmic ratio in development regulation of the early mouse embryo. Development 1990;109:323–328PubMedGoogle Scholar
  25. 25.
    Hyttel P, Niemann H: Ultrastructure of porcine embryos following development in vitro versus in vivo. Mol Reprod Dev 1990;27:136–144PubMedGoogle Scholar
  26. 26.
    Xu KP, Yadav BR, Rorie RW, Plante L, Betteridge KJ, King WA: Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and co-cultured with bovine oviducal epithelial cells. J Reprod Fertil 1992; 94:33–43PubMedGoogle Scholar
  27. 27.
    Greve T, Xu KP, Callesen H, Hyttel P: In-vivo development of in-vitro fertilized bovine oocytes matured in vivo and invitro. J In Vitro Fertil Embryo Trans 1987;4:281–285Google Scholar
  28. 28.
    Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL: Bovine in vitro fertilization with frozen thawed semen. Theriogenology 1986;25:591 -600Google Scholar
  29. 29.
    Pollard JW: Functional biology of bovine oviductal epithelial cells in vitro. PhD thesis, University of Guelph ON, Canada, 1992Google Scholar
  30. 30.
    Hyttel P, Madsen I: Rapid method to prepare mammalian oocytes and embryos for transmission electron microscopy. Acta Anat 1987;129:12–14PubMedGoogle Scholar
  31. 31.
    Reeve WJD, Kelly F: Nuclear position in cells of the mouse early embryo. J Embryol Exp Morphol 1983;75:117–139PubMedGoogle Scholar
  32. 32.
    Johnson MH, Maro B: The distribution of cytoplasmic actin mouse 8-cell blastomeres. J Embryol Exp Morphol 1984;82:97–117PubMedGoogle Scholar
  33. 33.
    Ziomek AC, Chatot CL, Manes C: Polarization of blastomeres in the cleaving rabbit embryo. J Exp Zool 1990;256:84–91PubMedGoogle Scholar
  34. 34.
    Calarco PG, McLaren A: Ultrastructural observations of preimplantation stages of the sheep. J Embryol Exp Morphol 1976;36:609–622PubMedGoogle Scholar
  35. 35.
    Merchant H: Ultrastructural changes in preimplantation rabbit embryos. Cytologia 1970;35:319–334PubMedGoogle Scholar
  36. 36.
    Calarco PG, Brown EH: An ultrastructural and cytological study of preimplantation development of the mouse. J Exp Zool 1969;171:253–281PubMedGoogle Scholar
  37. 37.
    Soupart P, Strong PA: Ultrastructural observation on human oocytes fertilized in vitro. Fertil Steril 1974;25:11–44PubMedGoogle Scholar
  38. 38.
    Panigel M, Kraemer DC, Kalter SS, Smith GC, Heberling RL: Ultrastructure of cleavage stages and preimplantation embryos of the baboon. Anat Embryol 1975;147:45–62PubMedGoogle Scholar
  39. 39.
    Gualtieri R, Santella L, Dale B: Tight junctions and cavitation in the human preembryo. Mol Reprod Dev 1992;32:81–87PubMedGoogle Scholar
  40. 40.
    Massip A, Mulnard J, Huygens R, Hanzen C, van Der Zwalmen P, Ectors F: Ultrastructure of the cow blastocyst. J Submicrosc Cytol 1981;13:31–40Google Scholar
  41. 41.
    Maillet M: Abrégé de Cytologie. Paris, Masson, 1977, p 261Google Scholar
  42. 42.
    Sathananthan H, Bongso A, Ng S-C, Ho J, Mok H, Ratman S: Ultrastructure of preimplantation human embryos cocultured with human ampullary cells. Hum Reprod 1990;5:309–318PubMedGoogle Scholar
  43. 43.
    El-Shershaby AM, Hinchliffe JR: Cell redundancy in the zona-intact preimplantation mouse blastocyst: a light and electron microscope study of dead cells and their fate. J Embryol Exp Morphol 1974;31:643–654PubMedGoogle Scholar
  44. 44.
    Ducibella T, Anderson E: Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol 1975;47:45–58PubMedGoogle Scholar
  45. 45.
    Ducibella T, Albertim DF, Anderson E, Biggers JD: The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev Biol 1975;45:231–250PubMedGoogle Scholar
  46. 46.
    Dale B, Gualtieri R, Talevi R, Tosti E, Santella L, Elder K: Intercellular communication in the early human embryo. Mol Reprod Dev 1991;29:22–28PubMedGoogle Scholar
  47. 47.
    van Blerkom J, Manes C, Daniel JCJ: Development of preimplantation rabbit embryos in vivo and in vitro. I: An ultrastructural comparison. Dev Biol 1973;35:262–282PubMedGoogle Scholar
  48. 48.
    Britton AP, Ruhnke HL, Miller RB, Johnson WH, Leslie KE, Rosendal S: In vitro exposure of bovine morulae to Ureaplasma diversum. Can J Vet Res 1987;51:198–203PubMedGoogle Scholar
  49. 49.
    Kruip TAM, Cran DG, van Beneden TH, Dieleman SJ: Structural changes in bovine oocytes during final maturation in vivo. Gamete Res 1983;8:29–47Google Scholar
  50. 50.
    Dorland M: Day 7 bovine embryo quality. A cell biological study. PhD thesis, University of Utrecht, The Netherlands, 1992Google Scholar
  51. 51.
    Bedford JM: Fertilization.In Reproduction in Mammals, Vol 1, Austin CR, Short RV, (eds). Cambridge, Cambridge University Press, 1982, pp 128–163Google Scholar
  52. 52.
    Norberg HS: Ultrastructural aspects of the preattached pig embryo: cleavage and early blastocyst stages. Z Anat Entwickl-Gesch 1973;143:95–114Google Scholar
  53. 53.
    Kessel RG: Annulate lamellae: a last frontier in cellular organelles. Int Rev Cytol 1992;133:43–120PubMedGoogle Scholar
  54. 54.
    Stern S, Biggers JD, Anderson E: Mitochondria and early development of the mouse. J Exp Zool 1971;176:179–192PubMedGoogle Scholar
  55. 55.
    Manes C: Genetic and biochemical activities in preimplantation embryos.In The Developmental Biology of Reproduction, Markert CL, Papaconstantinou J (eds). New York, Academic Press, 1975, pp 133–163Google Scholar
  56. 56.
    Mills RM, Brinster RL: Oxygen consumption of preimplantation mouse embryos. Exp Cell Res 1967;47:337–344Google Scholar
  57. 57.
    Brinster RL: Carbon dioxide production from glucose by the preimplantation mouse embryo. Exp Cell Res 1967;47:271–277PubMedGoogle Scholar
  58. 58.
    Brown JJG, Whittingham DG: The roles of pyruvate, lactate, and glucose during preimplantation development of embryos from F1 hybrid mice in vitro. Development 1991;112: 99–105PubMedGoogle Scholar
  59. 59.
    Pikó L: Synthesis of macromolecules in early mouse embryos cultured in vitro: RNA, DNA, and a polysaccharide component. Biol Reprod 1970;21:257–279Google Scholar
  60. 60.
    Pikó L, Chase DG: Role of the mitochondrial genome during early development in mice. J Cell Biol 1973;58:357–378PubMedGoogle Scholar
  61. 61.
    Bereiter-Hahn J: Behavior of mitochondria in the living cell. Int Rev Cytol 1990;122:1–63PubMedGoogle Scholar
  62. 62.
    Tesarik J, Kopecny V, Plachot M, Mandelbaum J, Da Lage C, Fléchon J-E: Nucleologenesis in the human embryo developing in vitro: ultrastructural and autoradiographic analysis. Dev Biol 1986;115:193–203PubMedGoogle Scholar
  63. 63.
    Wassarman PM, Josefowicz WJ, Oocyte development in the mouse: an ultrastructural comparison of oocytes isolated at various stages of growth and meiotic competence. J Morphol 1978;156:209–236PubMedGoogle Scholar
  64. 64.
    Crozet N: Ultrastructural aspects of in vivo fertilization in the cow. Gmnet Res 1984;10:241–251Google Scholar
  65. 65.
    Tesarík J: Gene activation in the human embryo developing in vitro.In Future Aspects in Human In Vitro Fertilization, Feichtinger W, Kemeter P (eds). Berlin, Springer-Verlag, 1987, pp 251–261Google Scholar
  66. 66.
    Szölözl D: Extrusion of nucleoli from pronuclei of the rat. J Cell Biol 1965;25:545–562PubMedGoogle Scholar
  67. 67.
    Tesarík J, Kopecny V, Plachot M, Mandelbaum J: Highresolution autoradiographic localization of DNA-containing sites and RNA synthesis in developing nucleoli of human preimplantation embryos: a new concept of embryonic nucleologenesis. Development 1987,101:777–791PubMedGoogle Scholar
  68. 68.
    Kopecny V, Fléchon JE, Camous S, Fulka Jr. J: Nucleologenesis and the onset of transcription in the eight-cell bovine embryos: fine-structural autoradiographic study. Mol Reprod Dev 1989;1:79–89PubMedGoogle Scholar
  69. 69.
    Kopecny V, Fulka Jr. J, Pivko J, Petr J: Localization of replicated DNA-containing sites in preimplantation bovine embryo in relation to the onset of RNA synthesis. Biol Cell 1989;65:231–238PubMedGoogle Scholar
  70. 70.
    Antalíková L, Fulka Jr. J: Ultrastructural localization of silver-staining nuclear proteins at the onset of transcription in early bovine embryos. Mol Reprod Dev 1990;26:299–307PubMedGoogle Scholar
  71. 71.
    King WA, Niar A, Chartrain I, Betteridge KJ, Guay P: Nucleolus organizer regions and nucleoli in preattachment bovine embryos. J Reprod Fertil 1988;82:87–95PubMedGoogle Scholar
  72. 72.
    Tománek M, Kopecny V, Kanka J: Genome reactivation in developing early pig embryos: an ultrastructural and autoradiographic analysis. Anat Embryol 1989;180:309–316PubMedGoogle Scholar
  73. 73.
    Chartrain I, Niar A, King WA, Picard L, St-Pierre H: Development of the nucleolus in early goat embryos. Gamete Res 1987;18:201–213PubMedGoogle Scholar
  74. 74.
    Rué G, Bierne J: Structural and functional relationships between nuclear bodies and the nucleolus-DNA body complex in the oocyte ofAmphiporus lactifloreus. Cell Differ Dev 1988;25:11–22PubMedGoogle Scholar
  75. 75.
    Hernandez-Verdun D: Structural organization of the nucleolus in mammalian cells.In Nuclear Submicroscopy, Vol 12, Jasmin G, Simard R (eds). Basel, Karger, 1986, pp 27–103Google Scholar
  76. 76.
    Plante L: The preattachment bovine embryo: genome activity and ultrastructure. PhD thesis, University of Guelph, ON, Canada, 1993Google Scholar
  77. 77.
    Leibo SP, Loskutoff NM: Cryobiology of in vitro-derived bovine embryos. Theriogenology 1993;36:81–94Google Scholar
  78. 78.
    Kopecny V, Pavlok A, Pivko J, Grafenau P, Biggiogera M, Leser G, Martin TE: Immunoelectron microscopic localization of small nuclear ribonucleoproteins during bovine early embryogenesis. Mol Reprod Dev 1991;29:209–219PubMedGoogle Scholar
  79. 79.
    Iwasaki S, Yoshiba N, Ushijima H, Watanbe S, Nakahara T: Morphology and proportion of inner cell mass of bovine blastocysts fertilizedin vitro andin vivo. J Reprod Fertil 1990;90:279–284PubMedGoogle Scholar
  80. 80.
    King WA: Chromosome abnormalities and pregnancy failure in domestic animals. Adv Vet Sci Comp Med 1991;34:229–250Google Scholar
  81. 81.
    van Blerkom J: Developmental failure in human reproduction associated with preovulatory oogenesis and preimplantation embryogenesis.In Ultrastructure of Human Gametogenesis and Early Embryogenesis, van Blerkom J, Motta PM, (eds). Boston, Kluwer, 1989, pp 125–180Google Scholar
  82. 82.
    Lopata A, Kohlman D, Johnston I: The fine structure of normal and abnormal human embryos developed in culture.In Fertilization of the Human Egg In Vitro. Biological Basis and Clinical Application, Beier HM, Lindner HR, (eds). Berlin, Springer-Verlag, 1983, pp 189–210Google Scholar
  83. 83.
    van Blerkom J, Henry G, Porreco R: Preimplantation human embryonic development from polypronuclear eggs after in vitro fertilization. Fertil Steril 1984;41:686–696PubMedGoogle Scholar
  84. 84.
    Tesarík J, Kopecny V, Plachot M, Mandelbaum J: Ultrastructural and autoradiographic observations on multinucleated blastomeres of human cleaving embryos obtained by in-vitro fertilization. Hum Reprod 1987;2:127–136PubMedGoogle Scholar
  85. 85.
    Hardy K, Winston RML, Handyside AH: Binucleate cells in human preimplantation embryos in vitro failure of cytokinesis during early cleavage. J Reprod Fert, 1990, Winter Meettng, London, 24 (abst)Google Scholar
  86. 86.
    Michelmann HW, Bonhoff A, Mettler L: Chromosome analysis in polyploid human embryos. Hum Reprod 1986;1:243–246PubMedGoogle Scholar
  87. 87.
    Moore NW, Adams CE, Rowson LEA: Developmental potential of single blastomeres of the rabbit egg. J Reprod Fertil 1968;17:527–531PubMedGoogle Scholar
  88. 88.
    Moore NW, Polge C, Rowson LEA: The survival of single blastomeres of pig eggs transferred to recipient gilts. Aust J Biol Sci 1969;22:979–982Google Scholar
  89. 89.
    Willadsen SM: A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature 1979;277:298–300PubMedGoogle Scholar
  90. 90.
    Willadsen SM: The developmental capacity of blastomeres from 4-and 8-cell sheep embryos. J Embryol Exp Morphol 1981;65:165–172PubMedGoogle Scholar
  91. 91.
    Loskutoff NM, Johnson WH, Betteridge KJ: The developmental competence of bovine embryos with reduced cell numbers. Theriogenology 1993;39:95–107Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • L. Plante
    • 1
  • W. A. King
    • 1
  1. 1.Department of Biomedical Sciences, Ontario Veterinary CollegeUniversity of GuelphGuelphCanada

Personalised recommendations