Advertisement

Meccanica

, Volume 12, Issue 2, pp 51–62 | Cite as

On wave propagation in thermoelastic solids whose polarization quadric is an ellipsoid of revolution

  • Giovambattista Amendola
Article
  • 19 Downloads

Summary

The propagation of plane waves of first and second order is considered for a thermoelastic solid characterized by Tolotti's isothermal potential. The variation of their amplitude in the time is also studied. In particular, thermodynamic influences on the behavior of the first order waves as well as the case when these plane waves are material surfaces are examined.

Keywords

Mechanical Engineer Civil Engineer Wave Propagation Plane Wave Tempo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

Si studia la propagazione di un'onda piana sia del primo che del secondo ordine in solidi termoelastici comprimibili assumendo il potenziale isotermo proposto da C. Tolotti. Si determina inoltre la variazione nel tempo dell'ampiezza delle onde. In particolare per l'onda del primo ordine si esaminano le influenze termodinamiche sul fenomeno e si considera la possibilità che la superficie di discontinuità sia materiale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    SIGNORINI A.,Trasformazioni termoelastiche finite, Mem. I, Ann. Mat. Pura Appl., (4),22 (1943), pp. 33–143.Google Scholar
  2. [2]
    SIGNORINI A.,Trasformazioni termoelastiche finite, Mem. III: Solidi incomprimibili, Ann. Mat. Pura Appl., (4),39 (1955), pp. 147–201.Google Scholar
  3. [3]
    TOLOTTI C.,Deformazioni elastiche finite: onde ordinarie di discontinuità e caso tipico di solidi elastici isotropi, Rendiconti di Matematica e delle sue applicazioni, (5),4 (1943), pp. 34–59.Google Scholar
  4. [4]
    BRESSAN A.,Sulla propagazione delle onde ordinarie di discontinuità nei sistemi a trasformazioni reversibili, Rend. Sem. Mat. Univ. Padova,33 (1963), pp 99–139.Google Scholar
  5. [5]
    SERRIN J.,Mathematical principles of classical fluid Mechanics, in Handbuch der Physik, Bd. VIII/1, Springer-Verlag, Berlin, 1959.Google Scholar
  6. [6]
    TRUESDELL C., TOUPIN R.,The classical field theory, in Handbuch der Physik, Bd. III/1, Springer-Verlag, Berlin, 1960.Google Scholar
  7. [7]
    THOMAS T. Y.,Plastic flow and fracture in solids, Academic Press, New York and London, 1961.Google Scholar
  8. [8]
    TRUESDELL C., NOLL W.,The non-linear field theories of Mechanics, in Handbuch der Physik, Bd. III/3, Springer-Verlag, Berlin, 1965.Google Scholar
  9. [9]
    TRUESDELL C.,The elements of Continuum Mechanics, Springer-Verlag, Berlin, 1966.Google Scholar
  10. [10]
    MANACORDA T.,On the waves propagation in Signorini's incompressible material, Boll. Un. Mat. Ital., (4),5 (1972), pp. 234–240.Google Scholar
  11. [11]
    CHADWICK P., CURRIE P. K.,The propagation and growth of acceleration waves in heat-conducting elastic materials, Arch. Rat. Mech. Anal.,49 (1972), pp. 137–158.Google Scholar
  12. [12]
    NUNZIATO J. W., HERRMANN W.,The general theory of shock waves in elastic non conductors, Arch. Rat. Mech. Anal.,47 (1972), pp. 272–287.Google Scholar
  13. [13]
    AMENDOLA G.,On the propagation of first order waves in incompressible thermoelastic solids, Bull. Un. Mat. Ital., (4),7 (1973), pp. 267–284.Google Scholar
  14. [14]
    CHEN P. J.,Growth and decay of waves in solids, in Handbuch der Physik, Bd. VIa/Springer-Verlag, Berlin, 1973.Google Scholar
  15. [15]
    CHEN P. J.,Thermodynamic influences on shock waves in inhomogeneous elastic bodies, Act of Mechanica,17 (1973), pp. 247–253.Google Scholar
  16. [16]
    TAKUOKA T.,Variation of amplitude of thermal-acustical waves of arbitrary form in isotropic linear thermoelastic materials, Int. J. Engn. Math.,7 (1973), pp. 361–366.Google Scholar
  17. [17]
    WALSH E. K., SCHULLER K. W.,Acceleration wave propagation in non-linear viscoelastic solid, J. Appl. Mech.,40 (1973), pp. 705–710.Google Scholar

Copyright information

© Tamburini Editore s.p.a. Milano 1977

Authors and Affiliations

  • Giovambattista Amendola
    • 1
  1. 1.Istituto di Matematiche Applicate U. DiniFacoltà di IngegneriaPisa

Personalised recommendations