Boundary-Layer Meteorology

, Volume 59, Issue 4, pp 341–362 | Cite as

Daily sensible heat flux estimation from a single measurement of surface temperature and maximum air temperature

  • J. -P. Lagouarde
  • K. J. McAneney


Surface energy budget investigations of a range of agricultural surfaces in France and the African Sahel demonstrate consistent linear relationships between daily totals of sensible heat flux (Hd) and the difference between a once-a-day radiative measurement of surface temperature and the maximum air temperature at a height of 2 m. Surface temperature was measured with nadir-viewing radiothermometers near 1400 h (LST). The average residual standard error in the estimate ofHd was 0.6 mm of equivalent evaporation.

An equation for the daily sensible heat flux (Hd) having a form analogous to Dalton's evaporation formula was derived from surface energy budget considerations. This equation discriminates well between relatively homogeneous, low-cover surfaces where surface exchange characteristics can be assumed to be simple fractions of the height of the roughness elements. By contrast, data from two other crops with discontinuous plant cover suggest a much reduced sensitivity to canopy architecture. This result is not unreasonable if scalar transport were controlled by the thermal conductivity of a layer of still air close to ground level which is sheltered by the plant canopy. There is scope for further experimental and theoretical work on this matter.


Heat Flux Surface Temperature Roughness Element Plant Canopy Flux Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J.-C., Goutorbe, J.-P., Perrier, A., Becker, F., Bessemoulin, P., Bourgeault, P., Brunet, Y., Brutsaert, W., Carlson, T., Cuenca, R., Gash, J., Gelpe, J., Hildebrand, P., Lagouarde, J.-P., Lloyd, C., Mahrt, L., Mascart, P., Mazaudier, C., Noilhan, J., Ottlé, C., Payen, M., Phulpin, T., Stull, R., Shuttleworth, J., Schmugge, T., Taconet, O., Tarrieu, C., Thepenier, R.-M., Valancogne, C., Vidal-Madjar, D. and Weill, A.: 1988, ‘Evaporation from Land-Surfaces: First Results from HAPEX-MOBILHY Special Observing Period’,Annales Geophysicae 6, 477–492.Google Scholar
  2. Assad, E. D.: 1987, ‘Utilisation des Satellites Météorologiques pour le Suivi Agroclimatique des Cultures en Zone Sahelienne, Cas du Sénégal’, Thèse de Doctorat de 3e cycle, Université de Sciences et Techniques du Languedoc, Montpellier II, Hydrologie et Mathematiques, 258 pp.Google Scholar
  3. Brunet, Y., Paw U., K. T. and Prévot, L.: 1991, ‘Using Radiative Surface Temperature in Energy Budget Studies over Plant Canopies’, InFifth International Colloquium, Physical Measurements and Signatures in Remote Sensing, 14–18 January, Courchevel (FRA).Google Scholar
  4. Brutsaert, W.: 1975a, ‘The Roughness Length for Water Vapour, Sensible Heat, and other Scalars’,J. Atmos. Sci. 32, 2028–2031.CrossRefGoogle Scholar
  5. Brutsaert, W.: 1975b, ‘On a Derivable Formula for Longwave Radiation from Clear Skies’,Water Resources Res. 11, 742–744.Google Scholar
  6. Brutsaert, W.: 1982,Evaporation into the Atmosphere, Theory, History and Applications, Reidel Publishing Co., Dordrecht, 299 pp.Google Scholar
  7. Denmead, O. T.: 1984, ‘Plant Physiological Methods for Studying Evapotranspiration: Problems of Telling the Forest from the Trees’,Agric. Water Management 8, 167–189.CrossRefGoogle Scholar
  8. De Vries, D. A.: 1963, ‘Thermal Properties of Soils’, pp. 210–235, In W. R. van, Wijk (ed.),Physics of the Plant Environment, North-Holland Pub. Co., Amsterdam.Google Scholar
  9. Garratt, J. R.: 1978, ‘Transfer Characteristics for a Heteorogeneous Surface of Large Aerodynamic Roughness’,Quart. J. R. Meteorol. Soc. 104, 491–502.CrossRefGoogle Scholar
  10. Fuchs, M. and Tanner, C. B.: 1966, ‘Infra-Red Thermometry of Vegetation’,Agron. J. 6, 597–601.Google Scholar
  11. Fuchs, M. and Tanner, C. B.: 1967, ‘Evaporation from a Drying Soil’,J. Applied Meteorol. 59, 494–496.Google Scholar
  12. Fuchs, M., Tanner, C. B., Thurtell, G. W. and Black, T. A.: 1969, ‘Evaporation from Drying Surfaces by the Combination Method’,Agron. J. 61, 22–26.Google Scholar
  13. Hatfield, J. L., Reginato, R. G. and Idso, S. B.: 1984, ‘Evaluation of Canopy Temperature-Evaporation Models over Various Crops’,Agric. and Forest Meteorol. 32, 41–53.CrossRefGoogle Scholar
  14. Hicks, B. B. and Wesely, M. L.: 1981, ‘Heat and Momentum Transfer Characteristics of Adjacent Fields of Soybean and Maize’,Boundary-Layer Meteorol. 20, 175–185.CrossRefGoogle Scholar
  15. Huband, N. D. S. and Monteith, J. L.: 1986, ‘Radiative Surface Temperature and Energy Balance of a Wheat Crop: I. Comparison of Radiative and Aerodynamic Canopy Temperature’,Boundary-Layer Meteorol. 36, 1–17.CrossRefGoogle Scholar
  16. Imbernon, J., Begue, A., Kerr, Y. and Lagouarde, J.-P.: 1990, ‘Suivi Agroclimatique des Cultures en Zone Sahelienne à Partir des Données NOAA de Mas Palomas’, Rapport Final Commission des Communautés Européennes — Programme ‘Caractérisation par les Techniques de la Télédétection de la Dynamique de la Désertification à la Périphérie Sud du Sahara — 2ème phase’, 166 pp.Google Scholar
  17. Jackson, R. D., Reginato, R. J. and Idso, S. B.: 1977, ‘Wheat Canopy Temperature: A Practical Tool for Evaluating Water Requirements’,Water Resources Res. 13, 651–656.Google Scholar
  18. Kustas, W. P., Choudhury, B. J., Inoue, Y., Pinter, P. J., Moran, M. S., Jackson, R. D. and Reginato, P. J.: 1990, ‘Ground and Aircraft Observations over a Partially-Vegetated Area’,Int. J. Remote Sensing 11, 409–427.Google Scholar
  19. Lagouarde, J.-P., Brunet, Y., Kerr, Y. and Imbernon, J.: 1991, ‘Estimating the Daily Upward Longwave Radiation from NOAA-AVHRR Data for Mapping Net Radiation’,Adv. Space Res. 11, 151–161.CrossRefGoogle Scholar
  20. McAneney, K. J., Baille, A. and Sappe, G.: 1988, ‘Turbulence Measurements during Mistral Winds with a 1-Dimensional Sonic Anemometer’,Boundary-Layer Meteorol. 42, 153–166.CrossRefGoogle Scholar
  21. Aneney, K. J., Prendergast, P. T., Judd, M. J. and Green, A. E.: 1991, ‘Decoupling of a Transpiring Crop from Wind by Intensive Windbreaks’, Agric. and Forest Meteorol. (in press).Google Scholar
  22. Monteith, J. L.: 1973,Principles of Environmental Physics, American Elsevier Publ. Co., N.Y., 241 pp.Google Scholar
  23. Panofsky, H. A. and Dutton, J. A.: 1984,Atmospheric Turbulence, Models and Methods for Engineering Applications, Wiley-Interscience, Wiley & Sons, New York, 397pp.Google Scholar
  24. Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’,J. Appl. Meteorol. 9, 857–861.CrossRefGoogle Scholar
  25. Priestley, C. H. B. and Taylor, R. J.: 1972, ‘On the Assessment of Surface Heat Flux and Evaporation using Large Scale Parameters’,Mon. Weather Rev. 100, 81–92.Google Scholar
  26. Raupach, M. R.: 1989, ‘Stand Overstorey Processes’, Phil. Trans. R. Soc., London B 324, 175-190.Google Scholar
  27. Riou, C. and Itier, B.: 1983, ‘Modification de la Formule de Dalton à Partir d'une Nouvelle Formulation du Flux Chaleur Sensible en Conditions Suradiabatiques’,J. Hydrology 63, 359–371.CrossRefGoogle Scholar
  28. Riou, C., Itier, B. and Seguin, B.: 1988, ‘The Influence of Surface Roughness on the Simplified Relationship between Daily Evaporation and Surface Temperature’,Int. J. Remote Sensing 9, 1529–1533.Google Scholar
  29. Seguin, B., Assad, E., Imbernon, J. P., Kerr, Y. and Lagouarde, J.-P.: 1989, ‘Use of Meteorological Satellites for Water Balance Monitoring in Sahelian Regions’,Int. J. Remote Sensing 10, 1101–1117.Google Scholar
  30. Seguin, B., Baelz, S., Monget, J.-M. and Petit, V.: 1982, ‘Utilisation de la Thermographie IR pour l'Estimation de l'évaporation Régionale. 1. Mise au point méthodologique sur le Site de la Crau’,Agronomie 2, 7–16.Google Scholar
  31. Seguin, B. and Itier, B.: 1983, ‘Using Midday Surface Temperature to Estimate Daily Evaporation from Satellite Thermal IR Data’,Int. J. Remote Sensing 4, 371–383.Google Scholar
  32. Stanhill, G.: 1969, ‘A Simple Instrument for the Field Measurement of Turbulent Diffusion Flux’,J. Applied Meteorol. 8, 509–513.CrossRefGoogle Scholar
  33. Steinmetz, S.: 1990, ‘Estimation de l'Efficience de Conversion en Matière Sèche du Rayonnement Solaire Intercepté par une Culture de Blé à Partir de la Réflectance Spectrale’, Thèse de Doctorat de 3e cycle, Université de Sciences et Techniques du Languedoc, Montpellier II, Science de l'Eau et Aménagement, 266 pp.Google Scholar
  34. Stewart, J. B., Shuttleworth, W. J., Blyth, K. and Lloyd, C. R.: 1989, ‘Fife: A Comparison between Aerodynamic Surface Temperature and Radiometric Surface Temperature over Sparse Prairie Grass’, InProc. of the 19th Conference of Agric. and Forest Meteorol., South Carolina, Amer. Meteorol. Soc., Boston Mass., USA.Google Scholar
  35. Tanner, C. B. and Pelton, W. L.: 1960, ‘Potential Evapotranspiration Estimates by the Approximate Energy Balance Method of Penman’,J. Geophys. Res. 65, 3391–3413.Google Scholar
  36. Thorn, A. S.: 1975, ‘Momentum, Mass and Heat Exchange of Plant Communities’, In J. L. Monteith (ed.)Vegetation and the Atmosphere, Vol. 1, Principles, Academic Press, London, pp 57–109.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • J. -P. Lagouarde
    • 1
  • K. J. McAneney
    • 1
  1. 1.I.N.K.A., Station de BioclimatologieVillenave-d'OrnonFrance

Personalised recommendations