Skip to main content
Log in

On lower bounds for theL 2-Wasserstein metric in a Hilbert space

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We provide two families of lower bounds for theL 2-Wasserstein metric in separable Hilbert spaces which depend on the basis chosen for the space. Then we focus on one of these families and we provide a necessary and sufficient condition for the supremum in it to be attained. In the finite dimensional case, we identify the basis which provides the most accurate lower bound in the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bickel, P. J., and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap.Ann. Statist. 9, 1196–1217.

    Google Scholar 

  2. Conway, J. B. (1985).A Course in Functional Analysis, Springer, New York.

    Google Scholar 

  3. Cuesta-Albertos, J. A., Dominguez-Menchero, J. S., and Matran-Bea, C. (1991). Some stochastics on monotone functions.J. Comp. Applied Math. 55, 165–182.

    Google Scholar 

  4. Cuesta-Albertos, J. A., and Matran-Bea, C. (1991). Notes on the Wasserstein metric in Hilbert spaces.Ann. Prob. 17, 1264–1276.

    Google Scholar 

  5. Cuesta-Albertos, J. A., C. Matran-Bea, L., and Tuero-Diaz, A. (1993). Optimal maps for theL 2-Wasserstein distance. Preprint.

  6. Cuesta-Albertos, J. A., Rüschendorf, L., and Tuero-Diaz, A. (1993). Optimal coupling of multivariate distributions and stochastic processes.J. Multivariate Anal. 46, 355–361.

    Google Scholar 

  7. Gelbrich, M. (1990). On a formula for theL 2-Wasserstein metric between measures on Euclidean and Hilbert Spaces.Math. Nachr. 147, 185–203.

    Google Scholar 

  8. Knott, M., and Smith, C. S. (1984). On the optimal mapping of distributions.J. Optim. Theory Appl. 43, 39–49.

    Google Scholar 

  9. Laha, R. G., and Rohatgi, V. K. (1979).Probability Theory, J. Wiley and Sons, Chichester.

    Google Scholar 

  10. Olkin, I., and Pukelsheim, F. (1982). The distance between two random vectors with given dispersion matrices.Linear Algebra Appl. 48, 257–263.

    Google Scholar 

  11. Rüschendof, L., and Rachev, S. T. (1990). A characterization of random variables with minimumL 2-distance.J. Multivariate Anal. 32, 48–54.

    Google Scholar 

  12. Rüschendorf, L. (1991). Fréchet bounds and their applications. In Dall'Aglio, G., Kotz, S., and Salinetti (eds.),Advances in probability distributions with given marginals. pp. 151–187.

  13. Schweizer, B. (1991). Thirty years of copulas. In Dall'Aglio, G., Kotz, S., and Salinetti, G. (eds.),Advances in Probability Distributions with Given Marginals. Pp. 13–50.

  14. Smith, C., and Knott, M. (1990). A note on the bound for theL 2 Wasserstein Metric. (Unpublished paper).

  15. Stout, W. F. (1974).Almost Sure Converge, Academic Press, New York.

    Google Scholar 

  16. Vakhania, N. N., Tarieladze, V. I., and Chobanyan, S. A. (1987).Probability Distributions on Banach Spaces, Reidel, Dordrecht.

    Google Scholar 

  17. Whitt, W. (1976). Bivariate distributions with given marginals.Ann. Statist. 4, 1280–1289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the Spanish DGICYT under grants PB91-0306-02-00, 01 and 02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuesta-Albertos, J.A., Matrán-Bea, C. & Tuero-Diaz, A. On lower bounds for theL 2-Wasserstein metric in a Hilbert space. J Theor Probab 9, 263–283 (1996). https://doi.org/10.1007/BF02214649

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02214649

Key Words

Navigation