Journal of Theoretical Probability

, Volume 7, Issue 4, pp 757–765 | Cite as

Large deviations for a class of chaos expansions

  • Víctor Pérez-Abreu
  • Constantin Tudor


The purpose of this paper is to present a general extended contraction principle for large deviations and apply it to obtain large deviations for random variables having chaos developments of exponential type.

Key Words

Large deviations chaos expansions multiple Wiener-Itô integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borell, C. (1978). Tail probabilities in Gauss space, inVector Space Measures and Applications Dublin 1977, Springer-Verlag, New York.L. N. Math. 644, 73–82.Google Scholar
  2. 2.
    Dawson, D. and Gärtner, J. (1987). Large deviations from the McKean-Vlasov limit for weakly interacting diffusions.Stochastics 12, pp. 247–308.Google Scholar
  3. 3.
    Dembo, A. and Zeitouni, O. (1993).Large Deviation Techniques and Applications. Jones and Bartlett, Boston.Google Scholar
  4. 4.
    Deuschel, J. D. and Stroock, D. (1989).Large Deviations. Academic Press, New York.Google Scholar
  5. 5.
    Ioffe, D. (1991). On some applicable versions of abstract large deviations theorems.Ann. Prob. 19, 1629–1639.Google Scholar
  6. 6.
    Itô K. (1951). Multiple Wiener integrals.J. Math. Soc. Japan 3, 157–169.Google Scholar
  7. 7.
    Ledoux, M. (1990). A note on large deviations for Wiener chaos. InSéminaire de Probabilités XXIV, Springer-Verlag, New York.L. N. Math. 1426, 1–14.Google Scholar
  8. 8.
    León, J. A. and Pérez-Abreu, V. (1993). Strong solutions of stochastic bilinear equations with anticipating drift in the first Wiener chaos. In Cambanis, S., Ghosh, J. K., Karandikar, R. and Sen, P. K. (eds.),Stochastic Processes: A Festschrift in Honour of Gopinath Kallianpur, Springer-Verlag, New York, pp. 235–243.Google Scholar
  9. 9.
    Mayer-Wolf, E. Nualart, D. and Pérez-Abreu, V. (1992). Large deviations for multiple Wiener-Itô integral processes. Springer-Verlag, New York. InSéminaire de Probabilités XXVP, L. N. Math. 1526, 11–31.Google Scholar
  10. 10.
    McKean, H. P. (1973). Wiener's theory of nonlinear noise. InStochastic Differential Equations, Proc.SIAM-AMS,6, 191–289.Google Scholar
  11. 11.
    Millet, A. Nualart, D. and Sanz, M. (1991). Small perturbations for quasilinear anticipating differential equations. Birkhäuser, New York.International Series of Numerical Mal. 102, 149–157.Google Scholar
  12. 12.
    Nualart, D. and Pardoux, E. (1988). Stochastic calculus with anticipating integrands.Probab. Theory and Related Fields 78, 535–581.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Víctor Pérez-Abreu
    • 1
  • Constantin Tudor
    • 2
  1. 1.Centro de Investigación en Matemáticas A. C.GuanajuatoMexico
  2. 2.Department of MathematicsUniversity of BucharestBucharestRumania

Personalised recommendations