Evolutionary Ecology

, Volume 4, Issue 3, pp 220–234 | Cite as

Exploitation ecosystems in heterogeneous habitat complexes

  • Tarja Oksanen

Summary

When the model of exploitation ecosystems by Oksanenet al. (1981) is re-analysed, using similar consumer-victim differential equations, but allowing dispersal between habitats differing in primary productivity, the relation between trophic dynamics and primary productivity turns out to be strongly dependent on the abundance relationships between different habitat types. In habitat complexes where a relatively productive habitat abounds, exploitation tends to ‘spill over' to the barren habitat, whose trophic dynamics thus become to a high degree driven by the dynamics in the productive habitat and entirely different from the predictions of Oksanenet al. (1981). Conversely, in habitat complexes where the barren habitat overwhelmingly prevails, the ‘spillover exploitation’ becomes strongly diluted. Consequently, local trophic dynamics within both habitats will behave approximately as predicted by the model of Oksanenet al. (1981).

Keywords

Dispersal exploitation herbivory heterogeneity patchiness predation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, R. A. (1979) Prey species replacement along a gradient of nutrient enrichment: a graphical approach.Ecology 60, 76–84.Google Scholar
  2. Brauer, F. and Soudack, A. C. (1981) Constant rate-stocking of predator-prey systems.J. Anim. Ecol. 11, 1–14.Google Scholar
  3. Bujalska, G. (1985) Regulation of female maturation inClethrionomys species, with special reference to an island population ofC. glareolus.Ann. Zool. Fennici 22, 331–42.Google Scholar
  4. Caughley, G. and Lawton, J. H. (1981) Plant-herbivore systems. InTheoretical ecology: principles and applications. 2nd edn. (R. M. May, ed.) pp. 132–66. Blackwell Scientific Publications, Oxford.Google Scholar
  5. Charnov, E. L. (1976) Optimal foraging: the marginal value theorem.Theor. Popul. Biol. 9, 124–36.Google Scholar
  6. Erlinge, S. (1974) Distribution, territoriality and numbers of the weased,Mustela nivalis, in relation to prey abundance.Oikos 25, 308–14.Google Scholar
  7. Erlinge, S. (1977) Spacing strategies in stoat,Mustela erminea. Oikos28, 32–42.Google Scholar
  8. Fretwell, S. D. (1972)Populations in a seasonal environment. Princeton Univ. Press, Princeton, NJ.Google Scholar
  9. Fretwell, S. D. (1977) The regulation of plant communities by food chains exploiting them.Perspect. Biol. and Medic. 20, 169–85.Google Scholar
  10. Fretwell, S. D. (1987) Food chain dynamics: the central theory of ecology?Oikos 50, 291–301.Google Scholar
  11. Fryxell, J. M., Greever, J. and Sinclair, A. R. E. (1988) Why are migratory ungulates so abundant?Amer. Natur. 131, 781–95.Google Scholar
  12. Gjaerevoll, O. (1956) The plant communities of the Scandinavian alpine snow-beds.Kongelige Norske Videnskaps Sellskapets Skrifter 1956 (1), 1–405.Google Scholar
  13. Hansson, L. and Henttonen, H. (1985) Regional differences in cyclicity and reproduction inClethrionomys species: are they related?Ann. Zool. Fennici 22, 277–88.Google Scholar
  14. Hairston, N., Smith, F. and Slobodkin, L. (1960) Community structure, population control and competition.Amer. Natur. 94, 421–5.Google Scholar
  15. Henttonen, H., Oksanen, T., Jortikka, A. and Haukisalmi, V. (1987) How much do weasels shape microtine cycles in the northern Fennoscandian taiga?Oikos 50, 353–65.Google Scholar
  16. Holt, R. D. (1977) Predation, apparent competition, and the structure of prey communities.Theor. Popul. Biol. 12, 197–229.PubMedGoogle Scholar
  17. Holt, R. D. (1984) Spatial heterogeneity, indirect interactions and the coexistence of prey species.Amer. Natur. 124, 377–406.Google Scholar
  18. Holt, R. D. (1985) Population dynamics of two-patch environments: some anomalous consequences of an optimal habitat distribution.Theor. Popul. Biol. 28, 181–208.Google Scholar
  19. Järvinen, A. (1987) Microtine cycles and plant production: what is cause and effect?Oikos 49, 352–7.Google Scholar
  20. Kalela, O. (1949) Uber Fjeldlemming-Invasionen und andere irregulären Tierwanderungen.Ann. Zool. Soc. ‘Vanamo’ 13, 1–90.Google Scholar
  21. Kalela, O. (1961) Seasonal change of habitat in the Norwegian lemming,Lemmus lemmus (L.).Ann. Acad. Sci. Fenn., A IV ‘Biologica’ 178, 1–22.Google Scholar
  22. Kalela, O. and Koponen, T. (1971) Food consumption and movements of the Norwegian lemmings in areas characterized by isolated fells.Ann. Zool. Fennici 8, 80–4.Google Scholar
  23. Kelsall, J. P. (1968)The migratory barren ground caribou of Canada. Can. Wildl. Serv. Monogr. Ser. 3. Queen's Printer, Ottawa, Ont.Google Scholar
  24. Korpimäki, E. (1984) Population dynamics of birds of prey in relation to fluctuations in small mammal populations in western Finland.Ann. Zool. Fennici 21, 287–93.Google Scholar
  25. Łomnicki, A. (1978) Individual differences between animals and the natural regulation of their numbers.J. Anim. Ecol. 47, 461–75.Google Scholar
  26. Łomnicki, A. (1987).Population ecology of individuals. Princeton Univ. Press, Princeton, NJ.Google Scholar
  27. Mech, L. D. (1966).The wolves of Isle Royale. Fauna National Parks U. S. Government Printing Office, Washington, DC.Google Scholar
  28. Murdoch, W. A. and Oaten, A. (1975) Predation and population stability.Adv. Ecol. Res. 9, 2–131.Google Scholar
  29. Nordhagen, R. (1927) Die Vegetation und Flora des Sylenegebietes. I. Die Vegetation.Videnskaps-Akad. Skrifter I, Mat. Naturv. Kl. 1927 (1), 1–612.Google Scholar
  30. Oksanen, L. (1981)Theoretical and empirical considerations on two-link ecosystems. PhD thesis, Kansas State UniversityGoogle Scholar
  31. Oksanen, L. (1983) Trophic exploitation and arctic phytomass patterns.Amer. Natur. 122, 45–52.Google Scholar
  32. Oksanen, L. (1988) Ecosystem organization: mutualism and cybernetics or plain Darwinian struggle for existence?Amer. Natur. 131, 424–44.Google Scholar
  33. Oksanen, L. (1989) Fredation, herbivory and plant strategies along gradients of primary productivity. InPerspectives on plant competition. (D. Tilman and J. Grace, eds) Academic Press, New York, pp. 445–69.Google Scholar
  34. Oksanen, L. (1990) Exploitation ecosystems in seasonal environments.Oikos 57, 14–24.Google Scholar
  35. Oksanen, L., Fretwell, S. D., Arruda, J. and Niemalä, P. (1981) Exploitation ecosystems in gradients of primary productivity.Amer. Natur. 118, 240–61.Google Scholar
  36. Oksanen, T. (1990a) The stoat (Mustela erminea) and the weasel (M. nivalis) as predators of voles in northern Fennoscandian taiga: a test of the hypothesis of exploitation ecosystems. Submitted toOlkos.Google Scholar
  37. Oksanen, T. (1990b) Does predation prevent Norwegian lemmings from establishing permanent populations in lowland forests?Biol. J. Linnean Soc. (London) (in press).Google Scholar
  38. Oksanen, T., Oksanen, L. and Norberg, M. (1990) Habitat use of small mustelids in North Fennoscandian tundra: a test of the hypothesis of patchy exploitation systems. Submitted toOikos.Google Scholar
  39. Pulliam, H. R. (1988) Sources, sinks and population regulation.Amer. Natur. 132, 652–61.Google Scholar
  40. Rosenzweig, M. L. (1969) Why does the prey isocline have a hump?Amer. Natur. 103, 81–7.Google Scholar
  41. Rosenzweig, M. L. (1971) The paradox of enrichment: destabilization of exploitation ecosystems in ecological time.Science 171, 385–7.PubMedGoogle Scholar
  42. Rosenzweig, M. L. (1973) Exploitation in three trophic levels.Amer. Natur. 107, 275–94.Google Scholar
  43. Rosenzweig, M. L. (1977). Aspects of biological exploitation.Quart. Rev. Biol. 52, 371–80.Google Scholar
  44. Rosenzweig, M. L. and Abramski, Z. (1986) Centrifugal community organization.Oikos 46, 339–48.Google Scholar
  45. Skjenneberg, S. and Slagsvold, L. (1968)Reindriften og dens naturgrunnlag. Universitetsforlaget. Oslo.Google Scholar
  46. Schaller, G. B. (1972)The Serengeti lion. Univ. Chicago Press, Chicago, IL.Google Scholar
  47. Tanner, J. T. (1975) The stability and intrinsic growth rates of prey and predator populations.Ecology 56, 855–67.Google Scholar
  48. Viitala, J. (1977) Social organization in cyclic populations of the volesClethrionomys rufocanus (Sund.) andMicrotus agrestis (L.)Ann. Zool. Fennici 14, 53–9Google Scholar
  49. Wollkind, D. J. (1976) Exploitation in three trophic levels: an extension allowing intraspecies carnivore interaction.Amer. Natur. 110, 431–47.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Tarja Oksanen
    • 1
  1. 1.Department of Animal EcologyUniversity of UmeåUmeåSweden

Personalised recommendations