Evolutionary Ecology

, Volume 5, Issue 4, pp 361–369 | Cite as

Analytic and simulation models predicting positive genetic correlations between traits linked by trade-offs

  • Patrick de Laguerie
  • Isabelle Olivieri
  • Anne Atlan
  • Pierre-Henri Gouyon


Using a two-loci multiplicative model of resource allocation, we show how the existence of several levels of resource allocation may affect the sign of the genetic correlations between traits linked by trade-offs. Positive genetic correlations between components of fitness affected by genetic trade-offs may result from different amounts of genetic variability at the pleiotropic loci determining the allocation of resources. Thus positive genetic correlations may be obtained in the absence both of environmental variation and of differences between individuals in resource acquisition. Nevertheless, positive correlations between all components of fitness at the same time cannot be obtained without variability in the acquisition of resources.


Resource allocation life histories fitness components covariances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlan, A., Gouyon, P. H., Fournial, T., Pomente, D. and Couvet, D. (1991) Sex allocation in an hermaphroditic plant: the case of gynodioecy inThymus vulgaris L.J. Evol. Biol. (in press).Google Scholar
  2. Barton, N. H. and Turelli, M. (1989) Evolutionary quantitative genetics: how little do we know?Ann. Rev. Genet. 23, 337–70.PubMedGoogle Scholar
  3. Bell, G. (1980) The costs of reproduction and their consequences.Am. Nat. 116, 45–76.Google Scholar
  4. Bell, G. (1984a) Measuring the cost of reproduction. I. The correlation structure of the life table of a plankton rotifer.Evolution 38, 300–13.Google Scholar
  5. Bell, G. (1984b) Measuring the cost of reproduction. II. The correlation structure of the life tables of five freshwater invertebrates.Evolution 38, 314–26.Google Scholar
  6. Bell, G. (1986) Reply to Reznicket al. Evolution 40, 1344–46.Google Scholar
  7. Charlesworth, B. (1990) Optimization models, quantitative genetics, and mutation.Evolution 44, 520–38.Google Scholar
  8. Devlin, B. (1989) Components of seed and pollen yield ofLobelia cardinalis: variation and correlations.Am. J. Bot. 76, 204–14.Google Scholar
  9. Falconer, D. S. (1981)Introduction to quantitative genetics, 2nd edn Longman Scientific and Technical, Harlow, UK.Google Scholar
  10. Giesel, J. T., Murphy, P. A. and Manlove, M. N. (1982). The influence of temperature on genetic interrelationships of life-history traits in a population ofDrosophila melanogaster: what tangled data sets we weave.Am. Nat. 119, 464–79.Google Scholar
  11. Law, R. (1979a) The cost of reproduction in annual meadow grass.Am. Nat. 113, 3–16.Google Scholar
  12. Law, R. (1979b) Optimal life histories under age-specific predation.Am. Nat. 114, 399–417.Google Scholar
  13. Martinez, D. E. (1989) Positive genetic correlations between life-history traits in a marine Oligochaete. InAbstracts of the second congress of the European Society for Evolutionary Biology, Rome, 25–29 September. 42, Italy.Google Scholar
  14. Pease, C. M. and Bull, J. J. (1988) A critique of methods for measuring life-history trade-offs.J. Evol. Biol. 1, 293–303.Google Scholar
  15. Primack, R. B. (1979) Reproductive effort in annual and perennial species ofPlantago.Am. Nat. 114, 51–62.Google Scholar
  16. Primack, R. B. and Antonovics, J. (1982) Experimental ecological genetics inPlantago. VII. Reproductive effort in populations ofP. lanceolata L.Evolution 36, 742–52.Google Scholar
  17. Reznick, D. (1983) The structure of guppy life histories: the trade-off between growth and reproduction.Ecology 64, 862–73.Google Scholar
  18. Reznick, D. (1985) Costs of reproduction: an evaluation of the empirical evidence.Oikos 44, 257–67.Google Scholar
  19. Reznick, D. N., Perry, E. and Travis, J. (1986) Measuring the cost of reproduction: a comment on papers by Bell.Evolution 40, 1338–44.Google Scholar
  20. Roff, D. A. and Mousseau, T. A. (1987) Quantitative genetics and fitness: lessons fromDrosophila.Heredity 58, 103–18.PubMedGoogle Scholar
  21. Rose, M. R. and Charlesworth, B. (1981a) Genetics of life-history inDrosophila melanogaster. I. Sib analysis of adult females.Genetics 97, 173–86.PubMedGoogle Scholar
  22. Rose, M. R. and Charlesworth, B. (1981b) Genetics of life-history inDrosophila melanogaster. II. Exploratory selection experiments.Genetics 97, 187–96.PubMedGoogle Scholar
  23. Scheiner, S. M., Caplan, R. L. and Lyman, R. F. (1989) A search for trade-offs among life-history traits inDrosophila melanogaster.Evol. Ecol. 3, 51–63.Google Scholar
  24. Thomson, J. D. and Barett, S. C. H. (1981) Temporal variation of gender inAralia hispida Vent. (Araliaceae).Evolution 35, 1094–1107.Google Scholar
  25. Thomson, J. D., McKenna, M. A. and Cruzan, M. B. (1989) Temporal patterns of nectar and pollen production inAralia hispida: implications for reproductive success.Ecology 70, 1061–68.Google Scholar
  26. Van Noordwijk, A. and De Jong, G. (1986) Acquisition and allocation of resources: their influence on variation in life-history tactics.Am. Nat. 128, 137–42.Google Scholar
  27. Van Noordwijk, A. J. and Gebhardt, M. (1987) Reflections on the genetics of quantitative traits with continuous environmental variation. InGenetic constraints on adaptative evolution (V. Loeschcke, ed.) pp. 73–90. Springer-Verlag, Berlin, GermanyGoogle Scholar
  28. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence.Evolution 11, 398–411.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • Patrick de Laguerie
    • 1
  • Isabelle Olivieri
    • 1
  • Anne Atlan
    • 2
  • Pierre-Henri Gouyon
    • 3
  1. 1.Station de Génétique et Amélioration des PlantesINRA Centre de MontpellierMauguioFrance
  2. 2.CEPE/CNRSMontpellier CedexFrance
  3. 3.ESVOrsay CedexFrance

Personalised recommendations