Journal of Theoretical Probability

, Volume 9, Issue 3, pp 765–796 | Cite as

A Berry-Esséen bound for student's statistic in the non-I.I.D. case

  • V. Bentkus
  • M. Bloznelis
  • F. Götze


We establish a Berry-Esséen bound for Student's statistic for independent (nonidentically) distributed random variables. In particular, the bound implies a sharp estimate similar to the classical Berry-Esséen bound. In the i.i.d. case it yields sufficient conditions for the Central Limit Theorem for studentized sums. For non-i.i.d. random variables the bound shows that the Lindeberg condition is sufficient for the Central Limit Theorem for studentized sums.

Key Words

Student's statistic Berry-Esséen bound non-identically distributed random variables convergence rate Central Limit Theorem selfnormalized sums 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai, Z. D., and Shepp, L. A. (1994). A note on the conditional distribution ofX when |Xy| is given.Stat. Prob. Letters 19, 217–219.Google Scholar
  2. 2.
    Bentkus, V., and Götze, F. (1994). The Berry-Esséen bound for Student's statistics. SFB 343 Preprint 94-033 Universität Bielefeld (to appear inAnn. Prob.).Google Scholar
  3. 3.
    Bentkus, V., Götze, F., Paulauskas, V., and Račkauskas, A. (1990). The accuracy of Gaussian approximtion in Banach spaces. SFB 343 Preprint 90-100, Universität Bielefeld. In Russian: Itogi Nauki i Tehniki, ser.Sovr. Probl. Matem., Moskva, VINITI81 (1991), 39–139;English in Encyclopedia of Mathematical Sciences, Springer (to appear).Google Scholar
  4. 4.
    Bentkus, V., Götze, F., and van Zwet, W. (1994). An Edgeworth expansion for symmetric statistics. SFB 343 Preprint 94-020, Universität Bielefeld, to appear inAnn. Stat.Google Scholar
  5. 5.
    Bhattacharya, R. N., and Denker, M. (1990).Asymptotic Statistics. Birkhäuser, Base-Boston-Berlin.Google Scholar
  6. 6.
    Bhattacharya, R. N., and Ghosh, J. K. (1986). On the validity of the formal Edgeworth expansion.Ann. Statist. 6, 434–451.Google Scholar
  7. 7.
    Chibisov, D. M. (1980). Asymptotic expansion for the distribution of a statistic admitting a stochastic expansion I.Theor. Prob. Appl. 25, 732–744.Google Scholar
  8. 8.
    Chung, K. L. (1946). The approximate distribution of Student's statistic.Ann. Math. Stat. 17, 447–465.Google Scholar
  9. 9.
    Csörgő, S., and Mason, D. M. (1987). Approximations of weighted empirical processes with applications to extreme, trimmed and self-normalized sums.Proc. of the First World Congress of the Bernoulli Soc., Tashkent, USSR, Vol. 2, VNU Science Publishers, Utrecht, pp. 811–819.Google Scholar
  10. 10.
    Efron, B. (1969). Student'st-test under symmetry conditions.J. Amer. Statist. Assoc., pp. 1289–1302.Google Scholar
  11. 11.
    Esséen, C.-G. (1945). Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law.Acta Math. 77, 1–125.Google Scholar
  12. 12.
    Feller, W. (1971).An Introduction to Probability Theory and Its Applications. Vol. II, 2nd Ed., Wiley, New York.Google Scholar
  13. 13.
    Friedrich, K. O. (1989). A Berry-Esséen bound for functions of independent random variables.Ann. Statist. 17, 170–183.Google Scholar
  14. 14.
    Götze, F., and Giné, E. (1995). On the domain of attraction to the normal law and convergence of selfnormalized sums, SFB 343 Preprint 95-099, Universität Bielefeld.Google Scholar
  15. 15.
    Götze, F., and van Zwet, W. (1991). Edgeworth expansions for asymptotically linear statistics, SFB 343 Preprint 91-034, Universität Bielefeld, revised version 1992.Google Scholar
  16. 16.
    Griffin, P. S., and Kuelbs, J. D. (1989). Self-normalized laws of the iterated logarithm.Ann. Prob.,17, 1571–1601.Google Scholar
  17. 17.
    Griffin, P. S., and Kuelbs, J. D. (1991). Some extensions of the LIL via self-normalizations.Ann. Prob. 19, 380–395.Google Scholar
  18. 18.
    Griffin, P. S., and Mason, D. M. (1991). On the asymptotic normality of self-normalized sums.Math. Proc. Camb. Phil. Soc. 109, 597–610.Google Scholar
  19. 19.
    Hahn, M. G., Kuelbs, J., and Weiner, D. C. (1990). The asymptotic joint distribution of self-normalized censored sums and sums of squares.Ann. Prob. 18, 1284–1341.Google Scholar
  20. 20.
    Hall, P. (1987). Edgeworth expansion for Student'st statistic under minimal moment conditions.Ann. Prob. 15, 920–931.Google Scholar
  21. 21.
    Hall, P. (1988). On the effect of random norming on the rate of convergence in the Central Limit Theorem.Ann. Prob. 16, 1265–1280.Google Scholar
  22. 22.
    Helmers, R. (1985). The Berry-Esséen bound for studentizedU-statistics.Canad. J. Stat. 13, 79–82.Google Scholar
  23. 23.
    Helmers, R., and van Zwet, W. (1982). The Berry-Esséen bound forU-statistics. In Gupta, S. S., and Berger, J. O. (eds.),Stat. Dec. Theory Rel. Top, Vol. 1, Academic Press, New York, pp. 497–512.Google Scholar
  24. 24.
    LePage, R., Woodroofe, M., and Zinn, J. (1981). Convergence to a stable distribution via order statistics.Ann. Prob. 9, 624–632.Google Scholar
  25. 25.
    Logan, B., Mallows, C., Rice, S., and Shepp, L. (1973). Limit distributions of selfnormalized sums.Ann. Prob. 1, 788–809.Google Scholar
  26. 26.
    Maller, A. (1981). A theorem on products of random variables, with application to regression.Austral. J. Statist. 23, 177–185.Google Scholar
  27. 27.
    Petrov, V. V. (1975).Sums of Independent Random Variables, Springer, New York.Google Scholar
  28. 28.
    Praskova, Z. (1989). Sampling from a finite set of random variables: the Berry-Esséen bound for the Studentized mean.Proc. of the Fourth Prague Symp. on Asymptotic Statistics, Charles Univ., Prague, pp. 67–82.Google Scholar
  29. 29.
    Robbins, H. (1948). The distribution of Student's t when the population mans are unequal.Ann. Statist. 19, 406–410.Google Scholar
  30. 30.
    Slavova, V. V. (1985). On the Berry-Esséen bound for Student's statistic.Lect. Notes Math. 1155, 335–390.Google Scholar
  31. 31.
    van Zwet, W. R. (1984). A Berry-Esséen bound for symmetric statistics.Z. Wahrsch. verw. Gebiete 66, 425–440.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. Bentkus
    • 1
  • M. Bloznelis
    • 2
  • F. Götze
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1Germany
  2. 2.Department of MathematicsVilnius UniversityVilniusLithuania

Personalised recommendations