Journal of Fusion Energy

, Volume 14, Issue 1, pp 13–24 | Cite as

Numerical aspects in the simulation of thermohydraulic transients in CICCs

  • L. Bottura


This paper gives a brief description of the model commonly used to simulate thermo-hydraulic transients in Cable-in-Conduit Conductors (CICC's), in particular quench initiation and evolution. A discussion on the mathematical and physical characteristics of the system of equations is the starting point to assess the difficulties and advantages of methods used for the numerical solution of this class of problems. The crucial points in the simulation of quench are highlighted, they are associated with the fluid flow and the presence of moving boundaries. The implications for a selection of an optimally suited solution method are discussed.

Key Words

Quench simulation numerical methods moving boundary adaptivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bottura,Stability, Protection and AC Loss of Cable-in-Conduit Conductors—A Designer's Approach, Fus. Eng. Des.,20, 351–362, 1993.CrossRefGoogle Scholar
  2. 2.
    M. O. Hoenig, D. B. Montgomery,Dense Supercritical Helium Cooled Superconductors for Large High Field Stabilized Magnets, IEEE Trans. Mag.,11, 2, 569, 1975.CrossRefGoogle Scholar
  3. 3.
    V. Arp,Stability and Thermal Quenches in Force-Cooled Superconducting Cables, 1980 Superconducting MHD Magnet Design Conference, MIT, Cambridge, MA, 142–157, 1980.Google Scholar
  4. 4.
    L. Dresner,Quench Pressure, Thermal Expulsion, and Normal Zone Propagation in Internally Cooled Superconductors, IEEE Trans. Mag.,25, 2, 1710–1712, 1989.CrossRefGoogle Scholar
  5. 5.
    L. Bottura, O. C. Zienkiewicz,Quench Analysis of Large Superconducting Magnets. Part I: Model Description, Cryogenics,32(7), 659–667, 1992.CrossRefGoogle Scholar
  6. 6.
    C. Luongo, R. J. Loyd, F. K. Chen, S. D. Peck,Thermal Hydraulic Simulation of Helium Expulsion from A Cable-in-Conduit Conductor, IEEE Trans. Mag.,25, 2, 1589–1595, 1989.CrossRefGoogle Scholar
  7. 7.
    A. Shajii, J. P. Freidberg,Quench in Superconducting Magnets. I. Model and Numerical Implementation, J. Appl. Phys.76, 3149–3158, 1994.CrossRefGoogle Scholar
  8. 8.
    A. Shajii, J. P. Freidberg,Quench in Superconducting Magnets. II. Analytic Solution, J. Appl. Phys.,76, 3159–3171, 1994.CrossRefGoogle Scholar
  9. 9.
    M. C. M. Cornellissen, C. J. Hoogendoorn,Propagation Velocity for a Force Cooled Superconductor, Cryogenics,25, 185–193, 1985.CrossRefGoogle Scholar
  10. 10.
    C. Hirsch,Numerical Computation of Internal and External Flows, J. Wiley & Sons, 1988.Google Scholar
  11. 11.
    L. Dresner,Theory of Thermal Hydraulic Quenchback in Cable-in-Conduit Superconductors, Cryogenics,31, 557–561, 1991.CrossRefGoogle Scholar
  12. 12.
    A. Shajii, J. P. FreidbergTheory of Thermal Hydraulic Quenchback, Report PFC/JA-94-42, Plasma Fusion Center, MIT, Cambridge, MA, submitted for publication in: Int. Jour of Heat and Mass Transfer, 1994.Google Scholar
  13. 13.
    L. Bottura,A Numerical Model for the Simulation of Quench in the ITER Magnets, NET Internal Report N/R/3500/44/A, 1994.Google Scholar
  14. 14.
    B. P. Leonard,A Survey of Finite Differences of Opinion on Numerical Muddling of the Incomprehensible Defective Confusion Equation, Finite Elements for Convection Dominated Flows, T. R. Hughes ed.,AMD 34, ASME, 1979.Google Scholar
  15. 15.
    J. Donea,Recent Advances in Computational Methods for Steady and Transient Transport Problems, Nucl. Eng. Des.,80, 141–162, 1984.CrossRefGoogle Scholar
  16. 16.
    O. C. Zienkiewicz, R. Loehner, K. Morgan, J. Peraire,High-Speed Compressible Flow and Other Advection-Dominated Problems of Fluid Dynamics, Finite Element in Fluids,6, 41–48, 1985.Google Scholar
  17. 17.
    R. Loehner,Finite Element Methods for Hyperbolic Partial Differential Equations, Ph.D. Thesis, University of Wales, Dept. of Civil Eng., 1984.Google Scholar
  18. 18.
    L. Bottura, A. Shajii,On the Numerical Studies of Quench in Cable-in-Conduit Conductors, Presented at 1994 Appl. Sup. Conf., Boston, MA, to appear in IEEE Trans. Appl. Sup.Google Scholar
  19. 19.
    O. C. Zienkiewicz, J. Z. Zhu, Y. C. Liu, K. Morgan, J. Peraire,Error Estimates and Adaptivity; from Elasticity to High Speed Compressible Flow, in The Mathematics of Finite Elements and Application (MAFELAP 87), J. R. Whiteman ed., 483–512, Academic Press, 1988.Google Scholar
  20. 20.
    J. Peraire, J. Peiro, L. Formaggia, K. Morgan, O. C. Zienkiewicz,Adaptive Remeshing for Compressible Flow Computations, J. Comp. Phys.,72, 449–466, 1987.CrossRefGoogle Scholar
  21. 21.
    M. N. Wilson,Superconducting Magnets, Clarendon Press, 1983.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. Bottura
    • 1
  1. 1.Division AT-MACERNGeneva 23Switzerland

Personalised recommendations