Veterinary Research Communications

, Volume 10, Issue 1, pp 355–397 | Cite as

Pathogenesis and pharmacology of diarrhea

  • L. Ooms
  • Ann Degryse


The etiological factors involved in diarrhea are multiple. Also the mechanisms and mediators involved are multiple: intracellular mediators (Ca, cAMP, cGMP, calmodulin, phospholipids), extracellular mediators (hormones, neurotransmitters, prostaglandins, enterotoxins...), intramural blood flow and oxygen, intestinal motility (local- and peristaltic motility).

Till now, antidiarrheals are not so versatile that they provide a solution to all types of diarrhea. The mechanisms of action of fluid replacement therapy, loperamide, alpha 2 agonist and some nonsteroidal anti-inflammatory substances are reviewed.


Oxygen Public Health Blood Flow Diarrhea Prostaglandin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wrong O.M., Edmonds C.J. and Chadwick V.S. The large intestine: its role in mammalian nutrition and homeostasis. 1981, p 2 MTP Press.Google Scholar
  2. 2.
    Palma R., Vidon N. and Bernier J.J. Maximal capacity for fluid absorption in human bowel. Dig. Dis. and Sci. 1981,26, 10, 929–934.Google Scholar
  3. 3.
    Fingl E. and Freston J.W. Antidiarrhoeal agents and laxatives: changing concepts. Clinics in gastroenterology, 1979,8, 161–185.Google Scholar
  4. 4.
    Phillips S.F. Diarrhea: a current view of the pathophysiology. Gastroenterology. 1972,63, 495–517.Google Scholar
  5. 5.
    Debognie J.C. and Phillips S.F. Capacity of the human colon to absorb fluid. Gastroenterology, 1978,74, 698–703.Google Scholar
  6. 6.
    Soergel K.H. Flow measurements of test meals and fasting contents in the human small intestine. In: Gastrointestinal motility. Ed.: L. Demling and R. Ottenjann. Thieme Stuttgart. 1971.Google Scholar
  7. 7.
    Binder H.J. Net fluid and electrolyte secretion: The pathophysiologic basis for diarrhea. In: Mechanisms of intestinal secretion. Ed: H.J. Binder. Kroc Foundation series. Vol.12. Alan R. Liss, Inc. N.Y. 1979, 1–15.Google Scholar
  8. 8.
    Schultz S.G. Is a coupled Na−K exchange pump involved in active transepithelial Na transport? A status report. In: Membrane transport processes. Ed.: J.F. Hoffman. Raven Press, N.Y. 1978, 213–227.Google Scholar
  9. 9.
    Legris G.P., Will P.C. and Hopfer U. Effects of serotonin on ion transport in intestinal and respiratory epithelium. Ann. N.Y. Acad. Sci., 1981, vol372, 345–346.Google Scholar
  10. 10.
    Tai Y-H. and Decker R.A. Mechanisms of electrolyte transport in rat ileum. Am. J. Physiol. 1980,238, 208–212.Google Scholar
  11. 11.
    Schultz S.G. Regulation of small intestinal ion transport by cyclic nucleotides and calcium. In: Secretory Diarrhea. Ed.: Field M., Fordtran J.S. and Schultz G. American Physiological Society. 1980, 1–9.Google Scholar
  12. 12.
    Frizzell R.A., Koch M.J. and Schultz S.G. Ion transport in the rabbit colon. I. Active and passive components. J. Membr. Biol. 1976,37, 297–316.Google Scholar
  13. 13.
    Schultz S.G., Frizzell R.A. and Nellans H.N. Active sodium transport and the electrophysiology of rabbit colon. J. Membr. Biol. 1977,33, 351–384.Google Scholar
  14. 14.
    Frizzell R.A. and Schultz S.G. Effect of aldosterone on ion transport by rabbit colonin vitro. J. Membr. Biol. 1978,39, 1–26.Google Scholar
  15. 15.
    Hubel, K.A. The ins and outs of bicarbonate in the alimentary tract. Gastroenterology. 1968,54, 647–651.Google Scholar
  16. 16.
    Hubel K.A. Bicarbonate secretion in rat ileum and its dependence on intraluminal chloride. Am. J. Physiol. 1967,213, 1409–1413.Google Scholar
  17. 17.
    Powell, D.W. Transport in large intestine. In: Membrane Transport in Biology. Ed.: Giebisch G., Tosteson D.C. and Ussing H.H. Springer, Berlin. 1979, Vol. IVB., 781–809.Google Scholar
  18. 18.
    Stevens C.E. and Stettler B.K. Factors affecting the transport of volatile fatty acids across the rumen epithelium. Am. J. Physiol. 1966,210, 365–372.Google Scholar
  19. 19.
    Same authors: Transport of fatty acid mixtures across rumen epithelium. Am. J. Physiol. 1966,211, 264–271.Google Scholar
  20. 20.
    Roediger W.E.W. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980,21, 793–798.Google Scholar
  21. 21.
    Ruppin H., Bon-Meir S., Soergel K.H., Wood C.M. and Schmitt M.G. Absorption of short-chain fatty acids by the colon. Gastroent. 1980,78, 1500–1507.Google Scholar
  22. 22.
    Argenzio R.A. Inter-relationship of sodium, chloride, bicarbonate and acetate transport by the colon of the pig. J. Physiol. 1979,295, 365–368.Google Scholar
  23. 23.
    Roediger W.E.W. and Moore A. Effects of a short chain fatty acid on sodium absorption in isolated human colon perfused through the vascular bed. Dig. Dis. and Sci. 1981,26, 2, 100–106.Google Scholar
  24. 24.
    Sellin J. and DeSoignie R. Rabbit proximal colon: a distinct transport epithelium. Gastroenterol. 1983,84, 5, 1304.Google Scholar
  25. 25.
    Métry, J.M., Neff M. and Knoblauch M. The microcirculation of the intestinal mucosa of the rat. An injection cast and scanning electron microscopy study. Scand. J. Gastroenterology. 1982,17, Suppl71, 159–161.Google Scholar
  26. 26.
    Lundgren O. Studies on blood flow distribution and countercurrent exchange in the small intestine. Acta Physiol. Scand. Suppl.303, 1976.Google Scholar
  27. 27.
    Biber B., Lundgren O. and Svanvik J. Intramural blood fow and blood volume in the small intestine of the cat as analyzed by an indicator dilution technique. Acta Physiol. Scand. 1973,87, 391–403.Google Scholar
  28. 28.
    Bond J.H., Prentiss R.A. and Levitt M.D. The effects of feeding on blood flow to the stomach, small bowel and colon of the conscious dog. J. Lab. Clin. Med. 1979,93, 594–599.Google Scholar
  29. 29.
    Lifson, N., Sircart B., Levitt al. Heterogenicity of macroscopic and single villus blood flow in rabbit small intestine. Microvasc. Res. 1979, 158–180.Google Scholar
  30. 30.
    Maxwell, L.C., Shepherd A.P., Riedel G.L. and Morris M.D. Effect of microsphere size on apparent intramural distribution of intestinal blood flow. Am. J. Physiol. 1981,241, H408-H414.Google Scholar
  31. 31.
    Svanvik J. Mucosal blood circulation and its influence on passive absorption in the small intestine. An experimental study in the cat. Acta Physiol. Scand. 1973, Suppl.385.Google Scholar
  32. 32.
    Kazimierz W. and Jacobson E.D. Relation between small intestinal motility and circulation. Am. J. Physiol. 1981,241, G1-G15.Google Scholar
  33. 33.
    Kvietys P.R., Perry M.A. and Granger D.N. Intestinal capillary exchange capacity and oxygen delivery-to-demand ratio. Am. J. Physiol. 1983,245, G635-G640.Google Scholar
  34. 34.
    Thomas E.M. and Munday K.A. Noradrenergic innervation of the villus. Scand. J. Gastroenterology. 1982,17, Suppl.71, 157.Google Scholar
  35. 35.
    Field M. and McColl I. Ion transport in rabbit ileal mucosa. III. Effects of catecholamines. Am. J. Physiol. 1973,225, 852–857.Google Scholar
  36. 36.
    Biber, B., Lundgren O. and Svanvik J. Studies on the intestinal vasodilation observed after mechanical stimulation of the mucosa of the gut. Acta Physiol. Scand. 1971,82, 177–190.Google Scholar
  37. 37.
    Blitz W. and Charbon G.A. Regional vascular influences of vasoactive intestinal peptide. In: Regulatory peptides. 1983, Suppl.2, S173.Google Scholar
  38. 38.
    Sjöqvist A., Fahrenkrug J., Jodal M. and Lundgren O. Effect of apamin in release of vasoactive intestinal polypeptide (VIP) from cat intestines. Acta Physiol. Scand. 1983,119, 69–76.Google Scholar
  39. 39.
    Rökaeus A., Tatemoto K. and Mutt V. Vascular actions of peptide YY (PYY). A new putative gut hormone. Regulatory peptides. 1983, Suppl.2, S172.Google Scholar
  40. 40.
    Granger D.N., Richardson P.D.I. and Taylor A.E. Volumetric assessment of the capillary filtration coefficient in the cat small intestine. Pflügers Arch. 1979,381, 25–33.Google Scholar
  41. 41.
    Johnson P.C. Myogenic nature of increase in intestinal vascular resistance with venous pressure elevation. Circ. Res. 1959,6, 992–999.Google Scholar
  42. 42.
    Shepherd A.P. Myogenic responses of intestinal resistance and exchange vessels. Am. J. Physiol. 1977,233, 547–554.Google Scholar
  43. 43.
    Chou C.C. Splanchnic and overall hemodynamics during eating and digestion. Fed. Proc. 1983,42, 1658–1661.Google Scholar
  44. 44.
    Uddman R., Alumets J., Edvinsson L., Hakanson R. and Sundler F. VIP nerve fibres around peripheral blood vessels. Acta Physiol. Scand. 1981,112, 65–70.Google Scholar
  45. 45.
    Granger D.N., Valleau J.D., Parker al. Effects of adenosine on vascular hemodynamics, oxygen delivery and capillary fluid exchange in the feline small intestine. Am. J. Physiol. 1978,235, H707-H719.Google Scholar
  46. 46.
    Donowitz M., Wicklein D., Reynolds D.C., Hynes R.A., Charney A.N. and Zimmer M.J. Effect of altered intestinal water transport on rabbit ileal blood flow. Am. J. Physiol.236, 4, E482-E487, 1979.Google Scholar
  47. 47.
    Couture R. and Regoli D. Mini Review: Smooth muscle pharmacology of substance P. Pharmacology. 1982,24, 1–25.Google Scholar
  48. 48.
    Yeo C.J., Jaffe B.M. and Zimmer M.J. Local regulation of blood flow in the feline jejunum. A possible role for endoluminally released substance P. J. Clin. Invest. 1982,70, 1329–1332.Google Scholar
  49. 49.
    Kachelhoffer J., Pousse A., Marescaux J., Iturizaga M. and Grenier J.F. Effects of motility and luminal distension on dog small intestine hemodynamics. Eur. Surg. Res. 1978,10, 184–193.Google Scholar
  50. 50.
    Mytkowsk B. and Michalowski J. Motility- and blood flow-dependent absorption of amino acids in canine small intestine. Eur. J. Clin. Invest. 1977,7, 79–86.Google Scholar
  51. 51.
    Chou C.C. and Grassmick B. Motility and blood flow distribution within the wall of the gastrointestinal tract. Am. J. Physiol. 1978,235, H34-H39.Google Scholar
  52. 52.
    Perry M.A. and Granger D.N. Permeability of intestinal capillaries to small molecules. Am. J. Physiol. 1981,241, G24-G30.Google Scholar
  53. 53.
    Brunsson I., Eklund S., Jodal al. The effect of vasodilation and sympathetic nerve activation on net water absorption in the cat's small intestine. Acta Physiol. Scand. 1979,106, 61–68.Google Scholar
  54. 54.
    Lifson N. Fluid secretion and hydrostatic pressure relationships in the small intestine. In: Kroc Foundation Series Vol.12. Mechanisms of intestinal secretion. Ed.: H.J. Binder. Alan R. Liss, Inc. 1979, 249–261.Google Scholar
  55. 55.
    Norman, D.A., Atkins J.M., Seelig L.L. and Gomez-Sanchez C. Water and electrolyte movement and mucosal morphology in the jejunum of patients with portal hypertension. Gastroenterology. 1980,79, 707–715.Google Scholar
  56. 56.
    Richardson P.D.I., Granger D.N. and Taylor A.E. Capillary filtration coefficient: the technique and its application to the small intestine. Cardiovasc. Res. 1979,13, 547–561.Google Scholar
  57. 57.
    Grandison A.S., Yates J. and Shields R. Capillary blood flow in the canine colon and other organs at normal and raised portal pressure. Gut. 1981,22, 223–237.Google Scholar
  58. 58.
    Kvietys P.R. and Granger D.N. Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology. 1981,80, 5, 962–969.Google Scholar
  59. 59.
    Granger D.N., Kvietys P.R., Mortillaro N.A. and Taylor A.E. Effect of luminal distension on intestinal transcapillary fluid exchange. Am. J. Physiol. 1980,239, 6, G516-G523.Google Scholar
  60. 60.
    Swabb E.A., Hynes R.A., Marnane W.G., McNeil J.S., Decker R.A., Tai Y.H. and Donowitz M. Intestinal filtration-secretion due to increased intraluminal pressure in rabbits. Am. J. Physiol. 1982,1, 65–75.Google Scholar
  61. 61.
    Ruf W., Suehiro G.T., Suehiro A., Pressler V. and McNamara J.J. Intestinal blood flow at various intraluminal pressures in the piglet with closed abdomen. Ann. Surg. 1980,191, 156–163.Google Scholar
  62. 62.
    Wallus K.M., Jacobson E.D. Relation between small-intestinal motility and circulation. Am. J. Physiol. 1981,241, 1, G1-G15.Google Scholar
  63. 63.
    Serhan C., Anderson P., Goodman E., Dunham P. and Weissman G. Phosphatidate and oxidized fatty acids are calcium ionophores. J. Biol. Chem. 1981,256, 6, 1736–1741.Google Scholar
  64. 64.
    Bolin T., Sjoedahl R., Sundqvist T. and Tagesson C. Passage of molecules through the wall of the gastrointestinal tract. Scand. J. Gastroenterol. 1981,16, 897–901.Google Scholar
  65. 65.
    Donowitz M. and Asarkof N. Calcium dependence of basal electrolyte transport in rabbit ileum. Am. J. Physiol. 1982,243, G28-G35.Google Scholar
  66. 66.
    Berridge M.J. Relationship between calcium and the cyclic nucleotides in ion secretion. In: Kroc Foundation series. Vol.12: Mechanisms of intestinal secretion. Ed.: H.J. Binder. Alan R. Liss, Inc. 1979, 65–81.Google Scholar
  67. 67.
    Bolton J.E. and Field M. Ca-ionophore-stimulated ion secretion in rabbit ileal mucosa: relation to actions of cyclic 3′,5′-AMP and carbamylcholine. J. Membrane Biol. 1977,35, 159–173.Google Scholar
  68. 68.
    Zimmerman T.W., Dobbins J.J. and Binder H.J. Role of calcium in the regulation of colonic secretion in the rat. Am. J. Physiol. 1983,244, G552-G560.Google Scholar
  69. 69.
    Ilundain A. and Naftalin R.J. Role of Ca2+-dependent regulator protein in intestinal secretion. Nature 1979,279, 446–448.Google Scholar
  70. 70.
    Klevit R.E., Levine B.A. and Williams R.J.P. A study of calmodulin and its interaction with trifluoperazine by high resolution in NMR spectroscopy. FEBS Letters. 1981,123, 1, 25–29.Google Scholar
  71. 71.
    Smith P.L. and Field M.In vitro antisecretory effects of trifluoperazine and other neuroleptics in rabbit and human small intestine. Gastroenterol. 1980,78, 6, 1545–1553.Google Scholar
  72. 72.
    Taylor L., Guerina J., Donowitz M., Cohen M. and Sharp G.W.G. Calcium and calmodulin-dependent protein phosphorylation in rabbit ileum. FEBS Letters. 1981,131, 322–324.Google Scholar
  73. 73.
    Hubel K.A. and Callanan D. Effects of Ca2+ on ileal transport and electrically induced secretion. Am. J. Physiol. 1980,239, G18-G29.Google Scholar
  74. 74.
    Peracchia C., Bernardini G. and Peracchia L.L. Is calmodulin involved in the regulation of gap junction permeability? Pflügers Arch. 1983,399, 152–154.Google Scholar
  75. 75.
    Palant C.E., Duffey M.E., Mookerjee B.K., Ho S. and Bentzel C.J. Ca2+ regulation of the tight-junction permeability and structure in Necturus gallbladder. Am. J. Physiol. 1983,245, C203-C212.Google Scholar
  76. 76.
    Burns D.L., Moss J. and Vaughan M. Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase. J. Biol. Chem. 1983,258, 2, 1116–1120.Google Scholar
  77. 77.
    Nellans H.N., Frizzell R.A. and Schultz S.G. Coupled sodium-chloride fluxes across the brush border of rabbit ileum. Am. J. Physiol. 1973,225, 467–475.Google Scholar
  78. 78.
    Simson J.N.L., Merhav A. and Silen W. Alkaline secretion by amphibian duodenum. III. Effects of db cAMP, theophylline and prostaglandins. Am. J. Physiol. 1981,241, G528-G536.Google Scholar
  79. 79.
    Simon B. and Kather H. Stimulation of human colonic adenylate cyclase. Dig. Dis. 1978,23, 1, 93–94.Google Scholar
  80. 80.
    Brasitus T.A., Field M. and Kimberg D.V. Intestinal mucosal cGMP: regulation and relation to ion transport. Am. J. Physiol. 1976,321, 285–292.Google Scholar
  81. 81.
    Hughes J.M., Murad F., Chang B. and Guerrant R.L. Role of cGMP in the action of heat-stable enterotoxin of Escherichia coli. Nature. 1978,271, 755–756.Google Scholar
  82. 82.
    Scoot A., Forsyth G.W., Kapitang al.. Effects of isolated heat-stable enterotoxin produced by Escherichia coli on fluid secretion and cyclic nucleotide levels in the jejunum of the weanling pig. Can. J. Physiol. Pharm. 1980,58, 772–777.Google Scholar
  83. 83.
    De Jonge H.R. and Van Dommelen F.S. Cyclic GMP-dependent phosphorylation and ion transport in intestinal microvilli. Cold Spring Harbour Conference on cell proliferation 1981,8, 1313–1331.Google Scholar
  84. 84.
    Stockbroekx R.A., Vandenberk J., Van Heertum A.H.M.T., Van Laar G.M.L.W., Van der Aa M.J.M.C., Van Bever W.F.M. and Janssen P.A.J. Synthetic antidiarrheal agents. J. Med. Chem. 1973,16, 782–786.Google Scholar
  85. 85.
    Browning J.G., Hardcastle J., Hardcastle P.T. and Redfern J.S. Localization of the effect of acetylcholine in regulating intestinal ion transport. J. Physiol. 1978,281, 15–27.Google Scholar
  86. 86.
    Morris A.I., Turnberg L.A., Hall L. and Pimblett K. The influence of a parasympathetic agonist and antagonist om human intestinal transportin vivo. Gastroenterology. 1980,79, 861–866.Google Scholar
  87. 87.
    Browning J.G., Hardcastle J., Hardcastle P.T. and Sandford S.A. The role of acetylcholine in the regulation of ion transport by rat colon mucosa. J. Physiol. 1977,272, 737–754.Google Scholar
  88. 88.
    Robinson R.G. and Gershon M.D. Synthesis and uptake of 5-hydroxytryptamine by the myenteric plexus of the guinea-pig ileum: a histochemical study. J. Pharm. Exp. Ther. 1971,178, 311.Google Scholar
  89. 89.
    Jurio A.V. and Gabella G. Noradrenalin in the guinea-pig alimentary canal: regional distribution and sensitivity to denervation and reserpine. J. Neurochem. 1974,22, 851.Google Scholar
  90. 90.
    Gershon M.D. and Ross L.L. Radioisotopic studies of the binding, exchange, and distribution of 5-hydroxytryptamine synthetized from its radioactive precursor. J. Physiol. 1966,186, 451.Google Scholar
  91. 91.
    Legay C., Faudon M., Héry F. and Ternaux J.P. 5-HT metabolism in the intestinal wall of the rat. I. The mucosa. Neurochem. Intern. 1983,5, 6, 721–727.Google Scholar
  92. 92.
    Gershon M.D. and Tamir H. Specificity and mechanism of nucleotide uptake by adrenal granules. Neuroscience, 1981,6, 11, 2277–2286.Google Scholar
  93. 93.
    Bülbring E. and Crema A. The release of 5-hydroxytryptamine in relation to the pressure exerted on the intestinal mucosa. J. Physiol. 1959,146, 18–28.Google Scholar
  94. 94.
    Kellum J.M. and Jaffe B.M. Release of immunoreactive serotonin following acid perfusion of the duodenum. Ann. Surg. 1976,184, 633–636.Google Scholar
  95. 95.
    Ahlman H., Lundberg J., Dahlström A. and Kewenter J. A possible vagal adrenergic release of serotonin from enterochromaffin cells in the cat. Acta Physiol. Scand. 1976,98, 366–375.Google Scholar
  96. 96.
    Petterson G., Dahlström A., Larsson I., Lundberg al. The release of serotonin from fat duodenal enterochromaffin cells by adrenoceptor agonists studiedin vitro. Acta Physiol. Scand. 1978,103, 219–224.Google Scholar
  97. 97.
    Ahlman H., DeMagistris L., Zimmer M. and Jaffe B.M. Release of immunoreactive serotonin into the lumen of the feline gut in response to vagal nerve stimulation. Science. 1981,213, 1254–1255.Google Scholar
  98. 98.
    Petterson G., Ahlman H., Dahlström A., Kewenter J., Larsson I. and Larsson P.A. The effect of transmural field stimulation on the serotonin content in rat duodenal enterochromaffin cellsin vitro. Acta Physiol. Scand. 1979, Suppl.470.Google Scholar
  99. 99.
    Fujita T., Osaka M. and Yanatori I. Granule release of enterochromaffin (EC) cells by cholera toxin in the rabbit. Arch. Histol. Jap. 1974,36, 5, 367–378.Google Scholar
  100. 100.
    Dahlström A., Ahlman H., Larsson al. Workshop: 5-Hydroxytryptamine in peripheral reactions. March 11–12, 1981. Janssen Pharmaceutica. Beerse, Belgium.Google Scholar
  101. 101.
    Gaginella T.S., Rimele T.J. and Wietecha M. Studies on rat intestinal epithelial cell receptors for serotonin and opiates. J. Physiol. 1983,335, 101–111.Google Scholar
  102. 102.
    Donowitz M., Asarkof N. and Pike G. Calcium dependence of serotonin-induced changes in rabbit ileal electrolyte transport. J. Clin. Invest. 1980,66, 341–352.Google Scholar
  103. 103.
    Kisloff B. and Moore E.W. Effect of serotonin on water and electrolyte transport in thein vivo rabbit small intestine. Gastroenterology. 1976,71, 1033–1038.Google Scholar
  104. 104.
    Donowitz M.N., Charney A.N. and Hefferman J.M. Effect of serotonin treatment on intestinal transport in the rabbit. Am. J. Physiol. 1977,232, 1, E85-E94.Google Scholar
  105. 105.
    Cassuto J., Jodal M., Tuttle R. and Lundgren O. The effect of lidocaine on the secretion induced by cholera toxin in the cat small intestine. Experientia, 1979,35, 1467–1468.Google Scholar
  106. 106.
    Nandi Majumdar A.P. and Nakhla A.M. Effects of 5-hydroxytryptamine on protein synthesis in gastrointestinal and other tissues and on serum gastrin concentration in rats. Br. J. Pharmacol. 1979,66, 211–215.Google Scholar
  107. 107.
    Ruckebusch Y., Bueno L., Fioramonti J. Workshop: Stress and serotonin in animals and man. Sept. 8–9, 1981. Janssen Pharmaceutica. Beerse, Belgium.Google Scholar
  108. 108.
    Bülbring E. and Crema A. The action of 5-hydroxytryptamine, 5-hydroxytryptophan and reserpine on intestinal peristalsis in anaesthetized guinea-pigs. J. Physiol. 1959,146, 29–53.Google Scholar
  109. 109.
    Burks T.F. Mediation by 5-hydroxytryptamine of morphine stimulant actions in dog instestine. J. Pharmacol. Exp. Ther. 1973,185, 530–539.Google Scholar
  110. 110.
    Hirst G.D.S. and Silinsky E.M. Some effects of 5-hydroxytryptamine, dopamine and noradrenalin on neurons in the submucous plexus of guinea-pig small intestine. J. Physiol. 1975,251, 817–832.Google Scholar
  111. 111.
    Morris A.I. and Turnberg L.A. Influence of isoproterenol and propanolol on human intestinal transportin vivo. Gastroenterology. 1981,81, 1076–1079.Google Scholar
  112. 112.
    Nakaki T., Nakadate T., Yamamoto S., Kato R. Adrenoceptors inhibit the cholera-toxin-induced intestinal fluid accumulation. Nauynyn-Schmiedeberg's Arch. Pharmacol. 1982,318, 181–184.Google Scholar
  113. 113.
    Linaker B.D., McKay J.S., Higgs N.B. and Turnberg L.A. Mechanisms of histamine stimulated secretion in rabbit ileal mucosa. Gut. 1981,22, 964–970.Google Scholar
  114. 114.
    Fouchereau-Peron M., Laburthe M., Besson J., Rosselin G. and Le Gal Y. Characterization of the VIP in the gut of fishes. Comp. Biochem. Physiol. 1980,65A, 489–492.Google Scholar
  115. 115.
    Saffrey M.J., Polak J.M. and Burnstock G. Distribution of vasoactive intestinal polypeptide, substance P, enkephalin and neurotensin-like immunoreactive nerves in the chicken gut during development. Neuroscience. 1982,7, 1, 279–293.Google Scholar
  116. 116.
    Dupont C., Laburthe M. and Rosselin G. Isolation of epithelial cells of human colon and demonstration of the action of VIP. Scand. J. Gastroent.13, Suppl.49, 1978, p. 51.Google Scholar
  117. 117.
    Bryant M.G., Polak J.M., Modlin I., Bloom S.R., Albuquerque R.H. and Pearse A.G.E. Possible dual role for vasoactive intestinal peptide as gastrointestinal hormone and neurotransmitter substance. Lancet1, 1976, 991.Google Scholar
  118. 118.
    Chayvially J.A., Miyata M., Rayford P.L., Thompson J.C. Effects of test meal, intragastric nutrients, and intraduodenal bile on plasma concentrations of immunoreactive somatostatin and vasoactive intestinal peptide in dogs. Gastroenterology. 1980,79, 844–852.Google Scholar
  119. 119.
    Bitar K.N., Said S.I., Weir G.C., Saffouri V., Makluof G.M. Neural release of vasoactive intestinal peptide from the gut. Gastroenterology. 1980,79, 1288–1294.Google Scholar
  120. 120.
    Bloom S.R. and Edwards A.V. Effects of autonomic stimulation on the release of VIP from the gastrointestinal tract in the calf. J. Physiol. 1980,299, 437–452.Google Scholar
  121. 121.
    Dimaline R. and Dockray G.J. Molecular variants of vasoactive intestinal polypeptide in dog, rat and hog. Life Sci.25, 1980, 1883–1900.Google Scholar
  122. 122.
    Beubler E. VIP and PGE activate adenylate cyclase in rat intestinal epithelial cell membranes via different mechanisms. Eur. J. Pharmacol. 1981,74, 67–72.Google Scholar
  123. 123.
    Broyart J.P., Dupont C., Laburthe M. and Rosselin G. Characterization of vasoactive intestinal peptide receptors in human colonic epithelial cells. J. Clin. Endocrinol. Metabol. 1981,52, 4, 715–721.Google Scholar
  124. 124.
    Laburthe M.C., Dupont C.M., Besson J.D., Rousset M. and Rosselin G.E. A new bioassay of VIP: results in watery diarrhoea syndrome. Gut. 1980,21, 619–623.Google Scholar
  125. 125.
    Binder H.J., Lemp G.F. and Gardner J.D. Receptors for vasoactive intestinal peptide and secretin on small intestinal epithelial cells. Am. J. Physiol.238, 1980, G190-G196.Google Scholar
  126. 126.
    Davis, G.R., Santa Ana C.A., Morawski S.G. and Fordtran J.S. Effect of vasoactive intestinal polypeptide on active and passive transport in the human jejunum. J. Clin. Invest. 1981,67, 1687–1694.Google Scholar
  127. 127.
    Krejs G.J., Fordtran al. The effect of VIP infusion on water and ion transport in the human jejunum. Gastroenterology.78, 1980, 722–727.Google Scholar
  128. 128.
    Prieto J.C., Laburthe M., Hui Bon Hoa D. and Rosselin G. Quantitative studies of vasoactive intestinal peptide (VIP) binding sites and VIP-induced adenosine 3′,5′-monophosphate production in epithelial cells from duodenum, jejunum, ileum, coecum, colon and rectum in the rat. Acta Endocrinol. 1981,96, 100–106.Google Scholar
  129. 129.
    Armiranoff B., Laburthe M. and Rosselin G. Characterization of specific binding sites for VIP in rat intestinal epithelial cell membranes. Bioch. et Biophys. Acta627, 1980, 215–224.Google Scholar
  130. 130.
    Armiranoff B., Laburthe M. and G. Rosselin. Potentiation by guanine nucleotides of the VIP-induced adenylate cyclase stimulation in intestinal epithelial cell membranes. Life Sci.26, 1980, 1905–1911.Google Scholar
  131. 131.
    Laburthe M., Manqeat P., Marchis-Mouren G. and Rosselin G. Activation of cAMP—dependent protein kinases by VIP in isolated intestinal epithelial cells from rat. Life Sci.25, 1980, 1931–1938.Google Scholar
  132. 132.
    Armiranoff B., Laburthe M., Dupont C. and Rosselin G. Characterization of a vasoactive intestinal peptide-sensitive adenylate cyclase in rat intestinal epithelial cell membranes. Biochem. Biophys. Acta544, 1978, 474–481.Google Scholar
  133. 133.
    Beubler E. Influence of vasoactive intestinal polypeptide on net water flux and cyclic adenosine 3′,5′-monophosphate formation in the rat jejunum. Nauynyn-Schmiedeberg's Arch. Pharmacol. 1980,313, 243–247.Google Scholar
  134. 134.
    Granger D.N., Kvietys P.R., Wilborn W.H., Mortillaro N.A. and Taylor A.E. Mechanism of glucagon-induced intestinal secretion. Am. J. Physiol. 1980,239, G30-G38.Google Scholar
  135. 135.
    Kaufman M.E., Dinno M.A. and Huang K.C. Effect of glucagon on ion transport in mouse intestine. Am. J. Physiol. 1980,238, G491-G494.Google Scholar
  136. 136.
    Guandalini S., Kachur J.F., Smith P.L., Miller R.J. and Field M.In vitro effects of somatostatin on ion transport in rabbit intestine. Am. J. Physiol. 1980,238, 2, G67-G74.Google Scholar
  137. 137.
    Dharmsathaphorn K., Binder H.J. and Dobbins J.W. Samotostatin stimulates sodium and chloride absorption in the rabbit ileum. Gastroenterology. 1980,78, 1559–1565.Google Scholar
  138. 138.
    Dharmsathaphorn K., Sherwin R.S. and Dobbins J.W. Somatostatin inhibits fluid secretion in the rat jejunum. Gastroenterology. 1980,78, 1554–1558.Google Scholar
  139. 139.
    Dharmsathaphorn K., Racusen L. and Dobbins J.W. Effects of somatostatin on ion transport in the rat colon. J. Clin. Invest. 1980,66, 813–820.Google Scholar
  140. 140.
    Laggner A., Pointener H. and Deutsch E. The influence of somatostatin on intestinal absorption. Regulatory peptides. 1980,1, 61–67.Google Scholar
  141. 141.
    Wilson F.A., Antonson D.L., Hart B.L., Warr T.A., Cherrington A.D. and Liljenquist J.E. The effect of somatostatin on the intestinal transport of glucosein vivo andin vitro in the rat. Endocrinology. 1980,106, 5, 1562–1567.Google Scholar
  142. 142.
    Costa M., Furness J.B., Smith I.J., Davies B. and Olivier J. An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea-pig intestine. Neuroscience. 1980,5, 841–852.Google Scholar
  143. 143.
    Furness J.B. and Costa M. Actions of somatostatin on excitatory and inhibitory nerves in the intestine. Eur. J. Pharmacol. 1979,56, 69–74.Google Scholar
  144. 144.
    Critchley D.R., Magnanii J.L. and Fishman P.H. Interaction of cholera toxin with rat intestinal brush border membranes. J. Biol. Chem. 1981,256, 6, 8724–8731.Google Scholar
  145. 145.
    Forsyth G.W., Kapitany R.A. and Hamilton D.L. Organic acid proton donors decrease intestinal secretion caused by enterotoxins. Am. J. Physiol. 1981,241, G227-G234.Google Scholar
  146. 146.
    Forstner J.F., Roomi N.W., Fahim R.E.F. and Forstner G.G. Cholera toxin stimulates secretion of immunoreactive intestinal mucin. Am. J. Physiol. 1981,240, G10-G16.Google Scholar
  147. 147.
    Lange S. and Loenroth I. Potentiating effect of bile on enterotoxin-induced diarrhea. Infection and immunity. 1982,35, 2, 391–395.Google Scholar
  148. 148.
    Field M. Modus of action of enterotoxin from Vibrio cholerae and Escherichia coli. Rev. Inf. Dis. 1979,1, 6, 918–926.Google Scholar
  149. 149.
    Gianella R.A., Luttrell M. and Thompson M. Binding of Escherichia coli heat-stable enterotoxin to receptors on rat intestinal cells. Am. J. Physiol. 1983,245, G492-G498.Google Scholar
  150. 150.
    Guandalini S., Rao M.C., Smit P.L. and Field M. cGMP modulation of ileal ion transport:in vitro effect of Escherichia coli heat-stable enterotoxin. Am. J. Physiol. 1982,234, G36-G41.Google Scholar
  151. 151.
    Elias J. and Shield R. Gut 1976,17, 527–535. Influence of staphylococcal enterotoxins on water and electrolyte transport in the small intestine.Google Scholar
  152. 152.
    Gianella A.A., Gots R.E., Charney A.N., Greenough W.B., Formal S.B. Pathogenesis of salmonella-mediated intestinal fluid secretion. Gastroenterology. 1975,69, 1238–1245.Google Scholar
  153. 153.
    Thorne, G.M. and Gorbach, S.L. New bacterial enterotoxins and human diarrheal diseases. In: Frontiers of knowledge in the diarrheal diseases. Ed.: Janowitz, H.D., Sachar, D.B. 1979, p. 165–176.Google Scholar
  154. 154.
    Weisberg, P.B., Carlson, G.M. and Cohen, S. Effect of Salmonella typhimurium on myoelectrical activity in the rabbit ileum. Gastroenterology. 1978,74, 47–51.Google Scholar
  155. 155.
    Schmall L.M., Argenzio R.A. and Whipp S.C. Pathophysiologic features of swine dysentery: cyclic nucleotide-independent production of diarrhea. Am. J. Vet. Res. 1983,44, 7, 1309–1316.Google Scholar
  156. 156.
    Vogelweid C.M. and Elmore R.G. Scanning electron microscopy of porcine jejunal loops infused with Escherichia coli endotoxin. Am. J. Vet. Res. 1983,44, 12, 2391–2394.Google Scholar
  157. 157.
    WHO Diarrheal Disease Control Programme. WHO Wkly Epidem. Rec. 1979,54, 121–123.Google Scholar
  158. 158.
    Colera Research Laboratory Annual Report. 1978.Google Scholar
  159. 159.
    Lecce J.G., Clare D.P., Balsbaugh R.K. and Collier D.N. Effect of dietary regimen on Rotavirus-Escherichia coli weanling diarrhea of piglets. J. Clin. Microbiol. 1983,17, 689–695.Google Scholar
  160. 160.
    Van Bever W. and Demoen P. Physicochemical and analytical studies on diphenoxylate, diphenoxin and loperamide. Modern Pharmacology-Toxicology. Vol7. Synthetic antidiarrheal drugs. Synthesis-Preclinical and Clinical Pharmacology. Ed.: W. Van Bever and H. Lal. Marcel Dekker Inc. 1976. pp. 37–63.Google Scholar
  161. 161.
    Niemegeers C.J.E., McGuire J.L., Heykants J.J.P. and Janssen P.A.J. Experimental dissociation between opiate-like and antidiarrheal drugs J. Pharmacol. Exp. Ther. 1979,210, 327–333.Google Scholar
  162. 162.
    Wuester M. and Hertz A. Opiate agonist action of antidiarrheal agents.In vitro andin vivo findings in support for selective action. Nauynyn Schmiedeberg's Arch. Pharmacol. 1978,301, 187–194.Google Scholar
  163. 163.
    Colpaert F.C., Niemegeers C.J.E., Lal H. and Janssen P.A.J. Investigations on drug produced and subjectively experienced discriminative stimuli. 2. Loperamide, an antidiarrheal devoid of narcotic cue producing actions. Life Sci. 1975,16, 717–728.Google Scholar
  164. 164.
    Colpaert F.C., Niemegeers C.J.E. and Janssen P.A.J. The narcotic discriminative stimulus complex: relationships to analgesic activity. J. Pharm. Pharmacol. 1976,28, 183–187.Google Scholar
  165. 165.
    Gianutsos G. and Lal H. Effect of loperamide, haloperidol and methadone in rats trained to discriminate morphine from saline. Psychopharmacologia, 1975,41, 268–270.Google Scholar
  166. 166.
    Jaffe J.H., Kanzler M. and Green T. Abuse potential of loperamide. Clin. Pharmacol. Ther. 1980,28, 812–819.Google Scholar
  167. 167.
    Blaton H., Niemegeers C.J.E. and Marsboon R. Preclinical animal studies of modern antidiarrheals. Satefy evaluation. In: Modern Pharmacology-Toxicology. Vol.7: Synthetic antidiarrheal drugs. Ed. W. Van Bever and H. Lal. Marcel Dekker Inc. 1976, pp 155–203.Google Scholar
  168. 168.
    Marsboom R., Herin V., Verstraeten A., Vandesteene R. and Fransen J. Loperamide (R 18553), a novel type of antidiarrheal agent. Part 4. Studies on subacute and chronic toxicity and the effect on reproductive processes in rats, dogs and rabbits. Arzneimittel-Forschung. 1974,24, 1645–1649.Google Scholar
  169. 169.
    Verhaegen H., Heykants J and Michiels M. Loperamide plasma levels in eight chronically treated patients. Unpublished report.Google Scholar
  170. 170.
    Heykants J., Michiels M., Knaeps A. and Brugmans J. Loperamide (R 18553), a novel type of antidiarrheal agent. Part 5. The pharmacokinetics of loperamide in rat and man. Arzneimittel-Forschung. 1974,24, 1649.Google Scholar
  171. 171.
    Michiels M., Hendriks R. and Heykants J. Radioimmunoassay of the antidiarrheal loperamide. Life Sci. 1977,21, 451.Google Scholar
  172. 172.
    Weintraub H.S., Killinger J.M., Heykants J., Kanzler M. and Jaffe J. H. Studies on the elimination rate of loperamide in man after administration of increasing oral doses of imodium. Current Therapeutic Research. 1977,21, 867.Google Scholar
  173. 173.
    Hisashi Miyazaki, Keiku Nambu, Yoshimosa Matsunaga and Masahisa Hashomoto. Disposition and metabolism of (14C loperamide in rats. Eur. J. Drug Metabolism and Pharmacokinetics. 1979,4, 199–206.Google Scholar
  174. 174.
    Merritt J.E., Brown B.L. and Tomlinson S. Loperamide and calmodulin. Lancet. 1982, 283–284.Google Scholar
  175. 175.
    Clouet D.H., Williams N. and Yonehara N. Is calmodulin-opioipeptide interaction related to the mechanism of opioid action? Life Sci. 1983,33, Suppl1., 727–730.Google Scholar
  176. 176.
    Zavecz J.H., Jackson T.E., Limp G.L. and Yellin T. O. Relationship between anti-diarrheal activity and binding to calmodulin. Eur. J. Pharmacol. 1982,78, 376–377.Google Scholar
  177. 177.
    Farack U.M., Kautz U. and Loeschke K. Loperamide reduces the intestinal secretion but not the mucosal cAMP accumulation induced by cholera toxin. Nauynyn-Schmiedeberg's Arch. Pharmacol. 1981,317, 178–179.Google Scholar
  178. 178.
    Sandhu B. Loperamide and cholera secretion. Clinical Res. Rev. 1981,1, Suppl.1, 155–159.Google Scholar
  179. 179.
    Sandhu B., Tripp J.H., Candy D.C.A. and Harries J.T. Lancet. 1979,II, 689–690.Google Scholar
  180. 180.
    Sandhu B.K., Tripp J.H., Candy D.C.A. and Harries J.T. Loperamide: studies on its mechanism of action. Gut. 1981,22, 658–662.Google Scholar
  181. 181.
    Watt J., Candy D.C.A., Gregory B., Tripp J.H. and Harries J.T. Loperamide modifies Escherichia coli heat-stable enterotoxin-induced intestinal secretion. J. Pediatric Gastroenterol. Nutr. 1982,1, 583–586.Google Scholar
  182. 182.
    Ilundain A. and Naftalin R.J. Opiates increase chloride permeability of the serosal border of the rabbit ileum. J. Physiol. 1981,316, 56–57.Google Scholar
  183. 183.
    Baker G.F., Segal M.B. The effects of loperamide on the ion fluxes across the isolated rabbit colon. Biochem. Pharmacol. 1981,30, 24, 3371–3373.Google Scholar
  184. 184.
    Naftalin R.J., Control of small intestinal absorption and secretion by modulation of the mucosal and serosal border chloride permeability. In: Electrolytes and water transport across the gastrointestinal epithelia. Ed.: R.M. Case, A. Garner, L.A. Turnberg and J.A. Young. Raven Press, N.Y. 1982, 277–285.Google Scholar
  185. 185.
    Turnberg L.A., McKay J. and Higgs N. The role of opiates in the control of small intestinal transport. In: Electrolytes and water transport across the gastrointestinal epithelia. Ed.: R.M. Case, A. Garner, L.A. Turnberg and J.A. Young. Raven Press. N.Y. 1982, 287–294.Google Scholar
  186. 186.
    McKay J.S., Linaker B.D. and Turnberg L.A. Influence of opiates on ion transport across rabbit ileal mucosa. Gastroenterology. 1981,80, 279–284.Google Scholar
  187. 187.
    Huges S., Higgs N.B. and Turnberg L.A. Loperamide has antisecretory activityin vivo in human jejunum. Gut. 1983,24, A495.Google Scholar
  188. 188.
    Karim S.M.M. and Adaikan P.G. The effect of loperamide on prostaglandin induced diarrhoea in rat and man. Prostaglandins. 1977,13, 321–331.Google Scholar
  189. 189.
    Lange A., Secher N.J. and Amery W. PEG2 induced secretion of fluid and electrolytes was reversed to absorption. Acta Med. Scand. 1977,202, 449–454.Google Scholar
  190. 190.
    Hardcastle J., Hardcastle P.T., Read N.W. and Redfern J.S. The action of loperamide in inhibiting prostaglandin-induced intestinal secretion in the rat. Br. J. Pharmacol. 1981,74, 563–569.Google Scholar
  191. 191.
    Beubler E. and Lembeck F. Inhibition of stimulated fluid secretion in the rat small and large intestine by opiate agonists. Nauynyn-Schmiedeberg's Arch. Pharmacol. 1979,306, 113–118.Google Scholar
  192. 192.
    Lee M.K. and Coupar I.M. Opiate receptor-mediated inhibition of rat jejunal fluid secretion. Life Sci. 1980,27, 2319–2325.Google Scholar
  193. 193.
    Warhurst G., Smith G., Tonge A. and Turnberg L. Effects of morphine on net water absorption, mucosal adenylate cyclase activity and PGE2 metabolism in rat intestine. Eur. J. Pharmacol. 1983,86, 77–82.Google Scholar
  194. 194.
    Verhaeren E.H.C., Dreessen M.J. and Lemli J.A. Influence of 1,8-dihydroxyanthraquinone and loperamide on the paracellular permeability across colonic mucosa. J. Pharm. Pharmacol. 1981,33, 526–528.Google Scholar
  195. 195.
    Schreiner J., Nell G. and Loeschke K. Effect of diphenolic laxatives on Na+−K+-activated ATPase and cyclic nucleotide content of rat colon mucosain vivo. Nauynym-Schmiedeberg's Arch. Pharmacol. 1980,313, 249–255.Google Scholar
  196. 196.
    Gordon, S.J., Kinsey M.D., Magan S.J., Joseph R.E. and Kowlessar O.D. Effect of bile acid induced secretion in the rat caecum. Gastroenterology. 1978,74, 5, part 2, 1040.Google Scholar
  197. 197.
    North R.A. and Williams J.T. How do opiates inhibit neurotransmitter release? TINS 1983,6, 337–339.Google Scholar
  198. 198.
    Yagasaki O., Suzuki H. and Sohji Y. Effects of loperamide on acetylcholine and prostaglandin release from isolated guinea pig ileum. Japan. J. Pharmacol. 1978,28, 873–882.Google Scholar
  199. 199.
    Kromer W., Scheiblhuber E. and Illes P. Functional antagonism by calcium of an intrinsic opioid mechanism in the guinea-pig isolated ileum. Neuropharmacol. 1980,19, 839–843.Google Scholar
  200. 200.
    Huidobro-Toro J.P., Leong Way E. Contractile effect of morphine and related opioid alkaloids, beta-endorphin and methionine enkephaline on the isolated colon from long Evans rats. Br. J. Pharmacol. 1981,74, 681–694.Google Scholar
  201. 201.
    Chang E.B., Field M. and Miller R.J. Enterocyte alpha 2-adrenergic receptors: yohimbine and p-aminoclonidine binding relative to ion transport. Am. J. Physiol. 1983,244, G76-G82.Google Scholar
  202. 202.
    Ahrens F.A. and Zhu B.L. Effects of epinephrine, clonidine, L-phenylephrine, and morphine on intestinal secretion mediated by Escherichia coli heat-stable enterotoxin in pig jejunum. Can. J. Physiol. Pharmacol. 1982,60, 1680–1685.Google Scholar
  203. 203.
    Limbird L.E. Alpha 2-adrenergic systems: models for exploring hormonal inhibition of adenylate cyclase. TIPS. 1983,4, 135–137.Google Scholar
  204. 204.
    Doherty N.S. and Hancock A.A. Role of alpha-2 adrenergic receptors in the control of diarrhea and intestinal motility. J. Pharmacol. Exp. Ther. 1983,225, 2, 269–274.Google Scholar
  205. 205.
    Wise C.M. et al. Effects of salicylates on intestinal secretion in calves given (intestinal loops) Escherichia coli heat-stable enterotoxin. Am. J. Vet. Res. 1983,44, 12, 2221–2225.Google Scholar
  206. 206.
    Takay Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T. and Nishizaka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 1979,254, 3692–3695.Google Scholar
  207. 207.
    De Jonge H. and Lohmann S.M. Mechanisms by which cyclic nucleotides and other intracellular mediators regulate secretion. In: Ciba Foundation Symposium112. Microbial toxins and diarrhoeal disease. Pitman, London. 1985, 116–138.Google Scholar

Copyright information

© Elsevier Science Publishers B.V 1986

Authors and Affiliations

  • L. Ooms
    • 1
  • Ann Degryse
    • 1
  1. 1.Dept. Vet. Pharmacol. Res.Janssen PharmaceuticaBeerseBelgium

Personalised recommendations