Skip to main content
Log in

A decomposition for someU-type statistics

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Define ,\(S_{k,n} = \Sigma _{1 \leqslant i_1< \cdot \cdot \cdot< l_k \leqslant n} X_{i_1 } \cdot \cdot \cdot X_{i_k } ,n \geqslant k \geqslant {\text{1}}\) where {X, X n ,n≥1} are i.i.d. random variables withEX=0,EX 2=1 and letH k (·) denote the Hermite polynomial of degreek. By establishing an LIL for products of correlated sums of i.i.d. random variables, the a.s. decomposition

$$\begin{gathered} k!S_{k,n} = n^{k/2} H_k (S_{1n} /n^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ) - \left( {\begin{array}{*{20}c} k \\ 2 \\ \end{array} } \right)S_{1.n}^{k - 2} \sum\limits_{i = 1}^n {(X_i^2 - 1)} \hfill \\ + O(n^{(k - 1)/2} (\log \log n)^{(k - 3/2} ) \hfill \\ \end{gathered} $$

valid whenEX 4<∞, elicits an LIL forη k,n =k!S k,n n k/2 H k (S 1n /n 1/2) under a reduced normalization. Moreover, whenE|X| p<∞ for somep in [2, 4], a Marcinkiewicz-Zygmund type strong law forη k,n is obtained, likewise under a reduced normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avram, F. and Taqqu, M. S. (1986). Symmetric polynomials of random variables attracted to an infinitely divisible law.Prob. Th. Rel. Fields 71, 491–500.

    Google Scholar 

  2. Feller, W. (1946). A limit theorem for random variables with Infinite moments.Amer. J. Math. 18, 257–262.

    Google Scholar 

  3. Fernholtz, L. and Teicher, H. (1980). Stability of random variables and iterated logarithm laws for martingales and quadratic forms.Ann. Prob. 8, 765–774.

    Google Scholar 

  4. Finkelstein, H. (1971). The law of the iterated logarithm for empirical distributions.Ann. Math. Statist. 42, 607–615.

    Google Scholar 

  5. Giné, E. and Zinn, J. (1992). Markinkiewicz type laws of large numbers and convergence of moments forU-type statistics. In Dudley, R. M., Hahn, M. G., and Kuelbs, J., (eds.),Probability in Banach Spaces, Birkhäuser, Boston,8, 273–291.

    Google Scholar 

  6. Hoeffding, W. (1961). The Strong Law of Large Numbers for U-Statistics. Institute of Statistics Mimeo Series 302, University of North Carolina, Chapel Hill.

    Google Scholar 

  7. Rubin, H. and Vitale, R. A. (1981). Asymptotic distribution of symmetric statistics.Ann. Stat. 8, 165–170.

    Google Scholar 

  8. Teicher, H. (1992). Convergence of self-normalized generalizedU-statistics.J. Th. Prob. 5, 391–405.

    Google Scholar 

  9. Teicher, H. (1995). Moments of randomly stopped sums-revisited.J. Th. Prob. 8, 779–793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teicher, H., Zhang, CH. A decomposition for someU-type statistics. J Theor Probab 9, 161–170 (1996). https://doi.org/10.1007/BF02213738

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02213738

Key Words

Navigation