Skip to main content
Log in

A representation of the Kantorovich-Functional

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper establishes the representation of the generalizedN-dimensional Wasserstein distance (Kantorovich-Functional)

$$W_c (P_1 ,...,P_N ): = \inf \left\{ {\int_{S^N } {c(x_1 ,...,x_N )d\mu } (x_1 ,...,x_N ):\pi _i \mu = P_i ,i = 1,...,N} \right\}$$

in the form ofW c(P 1,...,P N )=sup{∑ N i=1 }∫sf i dP i . The conditions we impose onP i ,c andf i enable us to follow those classical lines of arguments which lead to the Kantorovich-Rubinstein Theorem: By elementary methods we show how the result for an arbitrary metric space (S, d) can be derived from the case of finiteS. We also apply this result and the techniques of its proof in order to obtain a fairly simple proof of Strassen's Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Acosta, A. (1982). Invariance principles in probability for triangular arrays of B-valued random vectors and some applications.Ann. Prob. 10, 346–373.

    Google Scholar 

  2. Dudley, R. M. (1976). Probabilities and Metrics: Convergence of Laws on Metric Spaces, With a View to Statistical TestingAarhus Univ. Mat. Inst. Lecture Notes Series, No. 45, Aarhus.

  3. Dudley, R. M. and Neveu, J. (1980). On Kantorovich-Rubinstein Theorems, Preprint.

  4. Dudley, R. M. (1989).Real Analysis and Probability, Wadsworth and Brooks/Cole, Math. Series, Pacific Grove, CA California.

  5. Kantorovich, L. V. and Rubinstein, G. Sh. (1958). On a space of completely additive functions, Vestnik LGU, 13, no. 7,Ser. Mat. Astron. Phys. 2, 52–59 (in Russian).

    Google Scholar 

  6. Kellerer, H. G. (1984). Duality theorems for marginal problems.Z. Wahrsch. Verw. Geb. 67, 399–432.

    Google Scholar 

  7. Rachev, S. T. (1984). On a problem of Dudley.Soviet Math. Dokl. 29, 162–164.

    Google Scholar 

  8. Rachev, S. T. (1984). The Monge-Kantorovich mass transference problem and its stochastic applications.Theory Prob. Appl. 29, 647–676.

    Google Scholar 

  9. Rachev, S. T. and Shortt, R. M. (1990). Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals.Dissertationes Mathematicae 299, 1–35.

    Google Scholar 

  10. Rachev, S. T. and Rueschendorf, L. (1991). Recent results in the theory of probability metrics.St. & Decsn 9, 327–373.

    Google Scholar 

  11. Schay, G. (1979). Optimal joint distributions of several random variables with given marginals.Stud. Appl. Math. LXI, 179–183.

    Google Scholar 

  12. Szulga, A. (1978). On the Wasserstein metric. Transactions of the 8. Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes, Reidel, Dordrecht,B, 267–273.

    Google Scholar 

  13. Szulga, A. (1982). On minimal metrics in the space of random variables.Theory Prob. Appl. 27, 424–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rost, D., Wieckenberg, C. A representation of the Kantorovich-Functional. J Theor Probab 9, 87–103 (1996). https://doi.org/10.1007/BF02213735

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02213735

Key Words

Navigation