Journal of Theoretical Probability

, Volume 7, Issue 3, pp 599–607 | Cite as

A probabilistic approach to heat diffusion on symmetric spaces

  • M. Babillot
Article

Abstract

We give an interpretation of heat diffusion phenomena on symmetric spaces as described by Anker and Setti(2) in terms of the asymptotic behavior of Brownian motion.

Key Words

Symmetric space Brownian motion heat diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anker, J. Ph. (1992). Sharp estimates for some functions of the Laplacian on non compact symmetric spaces,Duke. Math. Jour. Vol. 65 No. 2.Google Scholar
  2. 2.
    Anker, J. Ph. and Setti, G. (1992). Asymptotic finite propagation speed for heat diffusion on certain riemannian manifolds,Jour. Func. Anal. 103, 50–61.Google Scholar
  3. 3.
    Babillot, M. (1991). Comportement asymptotique du mouvement Brownien sur une variété homogène à courbure négative ou nulle.Ann. I.H.P,27(1), 61–90.Google Scholar
  4. 4.
    Damek, E. and Hulanicki, A. (1990). Boundaries for leftinvariant subelliptic operators on semidirect products of nilpotent and abelian groups,Jour. reine und angewandte Math.,411, 1–50.Google Scholar
  5. 5.
    Furstenberg, H. (1963a). A Poisson formula for semi-simple Lie groups,Annals of Math.,77, 335–386.Google Scholar
  6. 6.
    Furstenberg, H. (1963b). Non commuting random products,T.A.M.S 108, 377–428.Google Scholar
  7. 7.
    Furstenberg, H. and Kesten, H. (1960). Products of random matrices,Ann. Math. Stat.,2(31), 457–469.Google Scholar
  8. 8.
    Guivarc'h, Y. and Raugi, A. (1985). Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence,Zeit. Wahr., vol.69, 187–242.Google Scholar
  9. 9.
    Karpelevitch, F. I. (1965, 1967). The geometry of geodesics and the eigenfunctions of the Laplace-Beltrami operator on symmetric spaces,Trudy Moskow Math. Obsc.,14, 48–185;Trans. Moscow Math. Soc. AMS,37 (6876), 51–199.Google Scholar
  10. 10.
    Malliavin, M. P. and Malliavin, P. (1974). Factorisation et lois limites de la diffusion horizontale au dessus d'un espace riemannien symétrique,Lecture Notes 404, 164–217.Google Scholar
  11. 11.
    Prat, J. J. (1971, 1975). Convergence angulaire de la diffusion sur une variété simplement connexe à courbure négative,C.R.A.S. Paris,272, 1586–1589 andC.R.A.S. Paris,280, 1539.Google Scholar
  12. 12.
    Raugi, A. (1977). Fonctions harmoniques sur les groupes localement compacts à base dénombrable,Bull. Soc. Math. France, Mem.54, 5–118.Google Scholar
  13. 13.
    Taylor, J. C. (1988). Brownian motion in non compact symmetric spaces, asymptotic behavior in Iwasawa coordinates,Cont. Maths., Vol. 73.Google Scholar
  14. 14.
    Taylor, J. C. (1991). Brownian motion in non compact symmetric spaces, asymptotic behavior in polar coordinates,Canad. Jour. Math. 43, 1–21.Google Scholar
  15. 15.
    Tutubalin, V. N. (1969). Some theorems of the type of the strong law of large numbers,Theory Prob. Appl. 14, 313–319.Google Scholar
  16. 16.
    Tutubalin, V. N. (1965). On limit theorems for a product of random matrices,Theory Prob. Appl. 10, 15–27.Google Scholar
  17. 17.
    Virtser, A. D. (1970). Central limit theorems for semi-simple Lie groups,Theory Prob. Appl. 15, 667–687.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • M. Babillot
    • 1
  1. 1.Laboratoire de ProbabilitésUniversité Paris VIParis cedex 05

Personalised recommendations