Advertisement

Journal of Insect Behavior

, Volume 9, Issue 5, pp 673–682 | Cite as

Individual constancy of local search strategies in the giant tropical ant,Paraponera clavata (Hymenoptera: Formicidae)

  • Michael D. Breed
  • Christian Stierstorfer
  • Ellen D. Furness
  • Joseph M. Jeral
  • Jennifer H. Fewell
Article

Abstract

Paraponera clavata workers engage in a period of local search after encountering a small amount of artificial nectar. Giving-up times from local search are not distributed normally; there is a strong skew to longer times. There is no statistically significant relationship between the amount of time required to collect the food and the subsequent search time. Giving-up time in response to the first reward presented to an ant is positively correlated with that ant's response to a second such reward. However, giving-up times diminish when an ant is presented with a series of rewards. Local search is a function of individual strategies, which remain relatively constant in the short term.

Key Words

foraging search strategy giving-up time Ponerinae tropical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breed, M. D., and Bennett, B. (1985). Mass recruitment to nectar sources inParaponera clavata: A field study.Insectes Soc. 33: 198–208.Google Scholar
  2. Breed, M. D., Fewell, J. H., Moore, A. J., and Williams, K. (1987). Modulated recruitment in a ponerine ant.Behav. Ecol. Sociobiol. 20: 407–411.Google Scholar
  3. Breed, M. D., Bowden, R. M., Garry, M. F., and Weicker, A. (1996). Search time variation in response to differences in nectar quantity and quality in the giant tropical ant,Paraponera clavata.J. Insect Behav. 9: 659–672.Google Scholar
  4. Calderone, N. W., and Page, R. E., Jr. (1992). Effects of interactions among genotypically diverse nestmates on task specialization by foraging honey bees.Behav. Ecol. Sociobiol. 30: 219–226.Google Scholar
  5. De Jonge, J., and Videler, J. J. (1989). Differences between the reproductive biologies ofTripterygion tripteronotus andT. delaisi (Pisces, Perciformes, Tripterygiidae): The adaptive significance of an alternative mating strategy and a red instead of a yellow nuptial colour.Marine Biol. 100: 431–437.Google Scholar
  6. Devries, D. R., Stein, R. A., and Chesson, P. L. (1989). Sunfish foraging among patches: The patch-departure decision.Anim. Behav. 37: 455–464.Google Scholar
  7. Doughty, P., Sinervo, B., and Burghardt, G. M. (1994). Sex-biased dispersal in a polygynous lizard,Uta stansburiana.Anim. Behav. 47: 227–229.Google Scholar
  8. Fewell, J. H. (1990). Directional fidelity as a foraging constraint in the western harvester ant,Pogonomyrmex occidentalis.Oecologia 82: 45–51.Google Scholar
  9. Fewell, J. H., and Page, R. E., Jr. (1993). Genotypic variation in foraging responses to environmental stimuli by honey bees.Apis mellifera. Experientia 49: 1106–1112.Google Scholar
  10. Fewell, J. H., Harrison, J. F., Stiller, T. M., and Breed, M. D. (1992). Distance effects on resource profitability and recruitment in the giant tropical ant,Paraponera clavata.Oecologia 92: 542–547.Google Scholar
  11. Fewell, J. H., Harrison, J. F., Lighton, J. R. B., and Breed, M. D. (1996). Foraging energetics in of the ant,Paraponera clavata.Oecologia 105: 419–427.Google Scholar
  12. Harrison, J., and Breed, M. D. (1987). Temporal learning in a ponerine ant.Physiol. Entomol. 12: 317–320.Google Scholar
  13. Janetos, A. C., and Cole, B. J. (1981). Imperfectly optimal animals.Behav. Ecol. Sociobiol. 9: 203–209.Google Scholar
  14. Kacelnik, A., Houston, A. I., and Schmid-Hempel, P. (1986). Central-place foraging in honey bees: The effect of travel time and nectar flow on crop filling.Behav. Ecol. Sociobiol. 19: 19–24.Google Scholar
  15. Kadmon, R., and Shmidma, A. (1992). Patch departure rules used by bees foraging for nectar: A field test.Evol. Ecol. 6: 142–151.Google Scholar
  16. Kamil, A. C., Misthal, R. L., and Stephens, D. W. (1993). Failure of simple optimal foraging models to predict residence time when patch quality is uncertain.Behav. Ecol. 4: 350–360.Google Scholar
  17. McNair, J. N. (1982). Optimal giving-up times and the marginal value theorem.Am. Nat. 119: 511–529.Google Scholar
  18. Nonacs, P., and Reeve, H. K. (1993). Opportunistic adoption of orphaned nests in paper wasps as an alternative reproductive strategy.Behav. Proc. 30: 47–60.Google Scholar
  19. Papaj, D. R., and Lewis, A. C. (eds.) (1993).Insect Learning: Ecological and Evolutionary Perspectives, Chapman & Hall, New York.Google Scholar
  20. Seeley, T. D. (1989). The honey bee colony as a superorganism: Decentralized control boosts chances of survival.Am. Sci. 77: 546–553.Google Scholar
  21. Young, A. M., and Hermann, H. R. (1980). Notes on foraging of the giant tropical antParaponera clavata (Hymenoptera: Formicidae: Ponerinae) in Costa Rica and Ecuador.J. Kans. Entomol. Soc. 53: 35–55.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Michael D. Breed
    • 1
  • Christian Stierstorfer
    • 1
  • Ellen D. Furness
    • 1
  • Joseph M. Jeral
    • 1
  • Jennifer H. Fewell
    • 2
  1. 1.Department of Environmental, Population, and Organismic BiologyUniversity of ColoradoBoulder
  2. 2.Department of ZoologyArizona State UniversityTempe

Personalised recommendations