Advertisement

Journal of Theoretical Probability

, Volume 7, Issue 1, pp 47–71 | Cite as

Central limit theorems for empirical andU-processes of stationary mixing sequences

  • M. A. Arcones
  • B. Yu
Article

Abstract

This paper gives sufficient conditions for the weak convergence to Gaussian processes of empirical processes andU-processes from stationary β mixing sequences indexed byV-C subgraph classes of functions. If the envelope function of theV-C subgraph class is inL p for some 2<p<∞, we obtain a uniform central limit theorem for the empirical process under the β mixing condition
$$k^{p/(p - 2)} (\log k)^{2(p - 1)/(p - 2)} \beta _k \to 0 as k \to \infty $$
In the case that the functions in theV-C subgraph class are uniformly bounded, we obtain uniform central limit theorems for the empirical process and theU-process, provided that the decay rate of the β mixing coefficient satisfies β k =O(kr) for somer>1. These conditions are almost minimal.

Key Words

Empirical process U-statistic mixing V-C class absolute regularity β-mixing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, N. T. and Dobrić, V. (1987). The central limit theorem for stochastic processes.Ann. Prob. 15, 164–177.Google Scholar
  2. 2.
    Andrews, D. W. K. (1991). An empirical process central limit theorem for dependent nonidentically distributed random variables.J. Mult. Anal. 38, 187–203.Google Scholar
  3. 3.
    Andrews, D. W. K. and Pollard, D. (1990). An introduction to functional central limit theorems for dependent processes. Preprint.Google Scholar
  4. 4.
    Arcones, M. A. and Giné, E. (1993). Limit theorems forU-processes.Ann. Prob. 23, 1494–1542.Google Scholar
  5. 5.
    Bernstein, S. N. (1927). Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes.Math. Ann. 97, 1–59.Google Scholar
  6. 6.
    Bonami, A. (1968). Ensembles λ(p) dans le dual deD .Ann. Inst. Four. 18, 193–204.Google Scholar
  7. 7.
    Bradley, R. C. (1985). On the central limit question under absolute regularity.Ann. Prob. 13, 1314–1325.Google Scholar
  8. 8.
    Doukhan, P., Massart, P., Rio, E. (1992a). The functional central limit theorem for strongly mixing processes. Tech. Rept. Univ. de Paris-Sud, France.Google Scholar
  9. 9.
    Doukhan, P., Massart, P., and Rio, E. (1992b). Invariance principles for absolute regular empirical processes. Tech. Rept. Univ. de Paris-Sud, France.Google Scholar
  10. 10.
    Dudley, R. M. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes.J. Funct. Ann. 1, 290–330.Google Scholar
  11. 11.
    Dudley, R. M. (1978). Central limit theorem for empirical processes.Ann. Prob. 6, 899–929.Google Scholar
  12. 12.
    Dudley, R. M. (1984). A course on empirical processes.Lect. Not. in Math. 1097, 1–142, Springer, New York.Google Scholar
  13. 14.
    Eberlein, E. (1984). Weak rates of convergence of partial sums of absolute regular sequences.Statist. Prob. Lett. 2, 291–293.Google Scholar
  14. 14.
    Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes.Ann. Prob. 12, 929–989.Google Scholar
  15. 15.
    Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution.Ann. Math. Statist. 19, 293–325.Google Scholar
  16. 16.
    Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.J. Amer. Statist. Assos. 58, 13–30.Google Scholar
  17. 17.
    Hoffmann-Jørgensen, J. (1984).Convergence of Stochastic Processes on Polish Spaces. Unpublished.Google Scholar
  18. 18.
    Ibragimov, I. A. (1962). Some limit theorems for stationary processes.Th. Prob. Appl. 7, 349–382.Google Scholar
  19. 19.
    Ibragimov, I. A. and Linnik, Yu. V. (1971).Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen, The Netherlands.Google Scholar
  20. 20.
    de Jong, R. M. (1993). Stochastic equicontinuity for unbounded mixing processes. Tech. Report. Free University of Amsterdam, The Netherlands.Google Scholar
  21. 21.
    Kolmogorov, A. M. and Tikhomirov, V. M. (1961). The ε-entropy and ε-capacity of sets in functional spaces.Amer. Math. Soc. Transl. 17, 277–364.Google Scholar
  22. 22.
    Lee, A. J. (1990).U-Statistics, Theory and Practice. Marcel Dekker, Inc., New York.Google Scholar
  23. 23.
    Massart, P. (1988). Invariance principles for empirical processes: the weakly dependent case. Chapter 1B of Ph.D. dissertation. Univ. of Paris.Google Scholar
  24. 24.
    Nobel, A. and Dembo, A. (1990). On uniform convergence for dependent processes. Preprint.Google Scholar
  25. 25.
    Nolan, D. and Pollard, D. (1987).U-processes: rates of convergence.Ann. Statist. 15, 780–799.Google Scholar
  26. 26.
    Nolan, D. and Pollard, D. (1988). Functional limit theorems forU-processes.Ann. Prob. 16, 1291–1298.Google Scholar
  27. 27.
    de la Peña, V. (1992). Decoupling and Khintchine's inequalities forU-statistics.Ann. Prob. 20, 1877–1892.Google Scholar
  28. 28.
    Le Cam, L. (1984). A remark on empirical measures. In Bickel, P., Doksum, K., and Hodges, J. (eds.),Festschrift for E. L. Lehmann, pp. 305–327. Belmont, CA: Wadsworth.Google Scholar
  29. 29.
    Philipp, W. (1982). Invariance principles for sums of mixing random elements and the multivariate empirical processes.Colloquia Mathematica Societatis János Bolyai 36, 843–873.Google Scholar
  30. 30.
    Pisier, G. (1983). Some applications of the metric entropy condition to harmonic analysis.Lect. Not. in Math. 995, 123–154, Springer, New York.Google Scholar
  31. 31.
    Pollard, D. (1984).Convergence of Stochastic Processes. Springer, New York.Google Scholar
  32. 32.
    Rio, E. (1992). Covariance inequalities for strongly mixing processes. Tech. Rept. Univ. de Paris-Sud, France.Google Scholar
  33. 33.
    Serfling, R. J. (1980).Approximation theorems of Mathematical Statistics. Wiley, New York.Google Scholar
  34. 34.
    Volkonskii, V. A. and Rozanov, Y. A. (1959). Some limit theorems for random functions I.Theor. Prob. Appl. 4, 178–197.Google Scholar
  35. 35.
    Volkonskii, V. A. and Rozanov, Y. A. (1961). Some limit theorems for random functions I.Theor. Prob. Appl. 6, 186–198.Google Scholar
  36. 36.
    Yoshihara, K. (1976). Limiting behavior ofU-statistics for stationary, absolute regular processes.Z. Wahrsch. verw. Geb. 35, 237–252.Google Scholar
  37. 37.
    Yu, B. (1990). Rates of convergence and central limit theorems for empirical processes of stationary mixing sequences. Tech. Rep. 260, Stat. Dept., Univ. of California, Berkeley.Google Scholar
  38. 38.
    Yu, B. (1993). Rates of convergence of empirical processes for stationary mixing sequences.Ann. Prob. (to appear).Google Scholar
  39. 39.
    Yukich, J.E. (1986). Rates of convergence for classes of functions: the non-i.i.d. case.J. Mult. Anal. 20, 175–189.Google Scholar

Copyright information

© Plenum Publishing corporation 1994

Authors and Affiliations

  • M. A. Arcones
    • 1
  • B. Yu
    • 2
  1. 1.Department of MathematicsUniversity of UtahSalt Lake City
  2. 2.Statistics DepartmentUniversity of WisconsinMadison

Personalised recommendations