Advertisement

Invertebrate Neuroscience

, Volume 2, Issue 4, pp 283–291 | Cite as

Novel embryonic regulation of Ca2+-activated K+ channel expression inDrosophila

  • Tarita Thomas
  • Bin Wang
  • Robert Brenner
  • Nigel S. Atkinson
Article

Abstract

Theslowpoke gene ofDrosophila melanogaster encodes a Ca2+-activated K+ channel that is expressed in neurons, muscles, tracheal cells and the middle midgut. The entire transcriptional control region ofslowpoke is contained in 11 kb of genomic DNA. Previous work has identified four different tissue-specific promoters (Promoters C1, C1b, C1c and C2) and sequences that regulate their activity. Here we describe and contrast the regulation of neuronal and muscle expression during embryogenesis with its regulation during larval and adult stages. Embryonic regulation is fundamentally different. The embryo uses Promoter C1 and a previously undescribed promoter, called Promoter Ce, to drive neuronal expression. The expression patterns of these promoters are distinct. Muscle expression arises from Promoter C2 as in other developmental stages. A downstream intronic region has been shown to contain control elements that modulate promoter activity differently in embryos, larvae and adults. Embryonic CNS expression is not dependent on the intron, however; its deletion has substantial effects on neuronal expression in larvae and adults. In embryonic muscle, removal of the intron eliminates muscle expression even though this deletion does not reduce larval muscle expression.

Key words

Drosophila potassium channel slowpoke calcium-activated gene regulation embryo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, N. S., Robertson, G. A. and Ganetzky, B. (1991) A component of calcium-activated potassium channels encoded by theDrosophila slo locus.Science,253, 551–555.Google Scholar
  2. Becker, M. N., Brenner, R. and Atkinson, N. S. (1995) Tissue-specific expression of aDrosophila Calcium-activated Potassium channel.J. Neurosci.,15, 6250–6259.Google Scholar
  3. Bowtell, D. D. L., Kimmel, B. E., Simon, M. A. and Rubin, G. M. (1989) Regulation of the complex pattern of sevenless expression in the developingDrosophila eye.Proc. Natl. Acad. Sci. USA,86, 6245–6249.Google Scholar
  4. Brenner, R. and Atkinson, N. (1996) Developmental and Eye-specific transcriptional control elements in an intronic region of a Ca2+-activated K+ channel gene.Dev. Biol,177, 536–543.Google Scholar
  5. Brenner, R. and Atkinson, N. S. (1997) Calcium-activated potassium channel gene expression in the midgut ofDrosophila. Comp. Biochem. Physiol. [B], in press.Google Scholar
  6. Brenner, R., Thomas, T. O., Becker, M. N. and Atkinson, N. S. (1996) Tissue-specific expression of a Ca2+-activated K+ channel is controlled by multiple upstream regulatory elements.J. Neurosci.,16, 1827–1835.Google Scholar
  7. Budnik, V., Zhong, Y. and Wu, C.-F. (1990) Morphological plasticity of motor axons inDrosophila mutants with altered excitability.J. Neurosci.,10, 3754–3768.Google Scholar
  8. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. and Salkoff, L. (1993)mSlo, a complex mouse gene encoding “maxi≓ calciumactivated potassium channels. Science,261, 221–224.Google Scholar
  9. Elkins, T. and Ganetzky, B. (1988) The roles of potassium currents inDrosophila flight muscles.J. Neurosci.,8, 428–434.Google Scholar
  10. Elkins, T., Ganetzky, B. and Wu, C.-F. (1986) ADrosophila mutation that eliminates a calcium-dependent potassium current.Proc. Natl. Acad. Sci. USA,83, 8415–8419.Google Scholar
  11. Fay, F. S. (1995) Calcium Sparks in Vascular Smooth Muscle: Relaxation Regulators.Science,270, 588–589.Google Scholar
  12. Hille, B. (1992) Ionic channels of excitable membranes, 2nd ed. Sunderland: Sinauer Associates, Inc.Google Scholar
  13. Hiromi, Y. and Gehring, W. J. (1987) Regulation and function of theDrosophila segmentation gene fushi tarazu.Cell,50, 963–974.Google Scholar
  14. Jan, L. Y. and Jan, Y. N. (1990) How might the diversity of potassium channels be generated?Trends Neurosci.,13, 415–419.Google Scholar
  15. Jia, X. X., Gorczyca, M. and Budnik, V. (1993) Ultrastructure of neuromuscular junctions inDrosophila: comparison of wild type and mutants with increased excitability [published erratum appears in J Neurobiol 1994 Jul;25(7):893-5].J. Neurobiol.,24, 1025–1044.Google Scholar
  16. Kandel, E. R., Schwartz, J. H. and Jessel, T. M. (1991)Principles of Neural Science. New York: Elsevier Science Publishing Co., Inc.Google Scholar
  17. Kirschman, J. A. and Cramer, J. H. (1988) Two new tools: multipurpose cloning vectors that carry kanamycin or spectinomycin/streptomycin resistance markers.Gene,68, 163–165.Google Scholar
  18. Klambt, C., Jacobs, J. R. and Goodman, C. S. (1991) The midline ofDrosophila Nervous System: A model for the genetic analysis of cell fate, cell migration, and growth cone guidance.Cell,64, 801–815.Google Scholar
  19. Levitan, E. S., Gealy, R., Trimmer, J. S. and Takimoto, K. (1995) Membrane depolarization inhibits Kvl.5 voltage-gated K+ channel gene transcription and protein expression in pituitary cells.J. Biol. Chem.,270, 6036–6041.Google Scholar
  20. Lewis, R. S. and Cahalan, M. D. (1995) Potassium and calcium channels in lymphocytes.Anna. Rev. Immunol.,13, 623–653.Google Scholar
  21. Li, X. and Noll, M. (1994) Compatibility between enhancers and promoters determines the transcriptional specificity of gooseberry and gooseberry neuro in theDrosophila embryo.EMBO J.,13, 400–406.Google Scholar
  22. Perney, T. M. and Kaczmarek, L. K. (1993) Expression and regulation of mammalian K+ channel genes.Sem. Neurosci.,5, 135–145.Google Scholar
  23. Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K. and Engels, W. R. (1988) A stable genomic source of P-element transposase inDrosophila melanogaster.Genetics,118, 461–470.Google Scholar
  24. Sah, P. (1996) Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. [Review].Trends Neurosci.,19, 150–154.Google Scholar
  25. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989)Molecular cloning. a laboratory manual, Second ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  26. Sheppard, D. N. and Giraldez, F. (1988) Kinetics of voltage- and Ca2+ activation and Ba2+ blockade of a large-conductance K+ channel fromNecturus enterocytes.J. Membrane Biol.,105, 65–75.Google Scholar
  27. Spradling, A. C. (1986) P-element mediated transformation. InDrosophila: a practical approach, ed. D. B. Roberts, pp 175–196. Oxford/Washington D.C.: IRL Press.Google Scholar
  28. Takimoto, K. and Levitan, E. S. (1994) Glucocorticoid induction of Kvl.5 K+ channel gene expression in ventricle of rat heart.Circ. Res.,75, 1006–1013.Google Scholar
  29. Takimoto, K. and Levitan, E. S. (1996) Altered K+ channel subunit composition following hormone induction of kvl.5 gene expression.Biochemistry,35, 14149–14156.Google Scholar
  30. Thummel, C. S., Boulet, A. M. and Lipshitz, H. D. (1988) Vectors forDrosophila P-element-mediated transformation and tissue culture transfection.Gene,74, 445–456.Google Scholar
  31. Turnheim, K., Constantin, J., Chan, S. and Schultz, S. G. (1989) Reconstitution of a calcium-activated potassium channel in basolateral membranes of rabbit colonocytes into lipid bilayers.J. Membrane. Biol.,112, 247–254.Google Scholar
  32. VÄssin, H., Vielmetter, J. and Campos-Ortega, J. A. (1985) Genetic interactions in early neurogenesis ofDrosophila melanogaster.J. Neurogenet.,2, 291–308.Google Scholar
  33. Wieschaus, E. (1986) Looking at embryos. InDrosophila: a practical approach, ed. D. B. Roberts, pp 199–227. Oxford/Washington D.C.: IRL Press.Google Scholar

Copyright information

© Sheffield Academic Press 1997

Authors and Affiliations

  • Tarita Thomas
    • 1
  • Bin Wang
    • 1
  • Robert Brenner
    • 1
  • Nigel S. Atkinson
    • 1
  1. 1.Department of ZoologyThe University of Texas at AustinAustinUSA

Personalised recommendations