Radiophysics and Quantum Electronics

, Volume 15, Issue 3, pp 303–313 | Cite as

On permanent rotation of an equatorial satellite in the geomagnetic field

  • A. A. Khentov
Article
  • 14 Downloads

Abstract

Permanent rotations of a magnetized spacecraft are considered. The shape of the cone of the permanent axes is revealed, and those generants on it which correspond to the actual motion are noted. By formulating Lyapunov functions certain axes about which the rotation is stable are isolated. In conclusion a series of particular cases is considered. The launching of a satellite into a stable permanent-rotation mode allows it to be stabilized in a specific manner relative to the lines of force of the geomagnetic field.

Keywords

Quantum Electronics Nonlinear Optic Actual Motion Specific Manner Equatorial Satellite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W.R. Bandeen and W. P. Manger, J. Geophys. Res.,65, No. 9, 2992 (1960).Google Scholar
  2. 2.
    R. E. Fischell and F. F. Mobley, Problems in Altitude Control of Artificial Earth Satellites [in Russian], Nauka (1966), p. 106.Google Scholar
  3. 3.
    G. Colombo, On the Motion of Explorer XI around Its Center of Mass, Preprint Amer. Astronaut. Soc, No. 45 (1962).Google Scholar
  4. 4.
    V. V. Beletskii, Motion of an Artificial Satellite Relative to Its Center of Mass [in Russian], Nauka (1965).Google Scholar
  5. 5.
    B. M. Yanovskii, Terrestrial Magnetism [in Russian], LGU, Leningrad (1964).Google Scholar
  6. 6.
    N. V. Adam. N. P. Ben'kova, et al., Geomagnetizm i Aéronomiya,2, No. 5, 949 (1962).Google Scholar
  7. 7.
    N. P. Ben'kova, Transactions of the Third Conference on Problems of Cosmogony [in Russian], Izd. AN SSSR (1954).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  9. 9.
    T. Levi-Chivita and W. Amaldi, Course in Theoretical Mechanics [Russian translation], Second Edition (Part 2), IL, Moscow (1951).Google Scholar
  10. 10.
    O. Staude, J. für die Reine und Angew. Mat.,113, 318 (1894).Google Scholar
  11. 11.
    B. K. Mlodzeevskii, Transactions of the Division of Physical Sciences of the Naturalist Society [in Russian], Vol. 7, No. 1 (1894), p. 46.Google Scholar
  12. 12.
    V. V. Rumyantsev, Prikl. Matem. i Mekh.,20, No. 1, 51 (1956).Google Scholar
  13. 13.
    P. V. Kharlamov, Prikl. Matem. i Mekh.,29, No. 2, 373 (1965).Google Scholar
  14. 14.
    A. Anchev, Prikl. Matem. i Mekh.,31, No. 1, 49 (1967).Google Scholar
  15. 15.
    A. G. Kurosh, Course in Higher Algebra [Russian translation], Fizmatgiz (1959).Google Scholar
  16. 16.
    F. R. Gantmakher, Lectures on Analytical Mechanics [in Russian], Nauka, Moscow (1966).Google Scholar
  17. 17.
    G. K. Pozharitskii, Prikl. Matem. i Mekh., 22, No. 2, 145 (1958).Google Scholar
  18. 18.
    A. A. Khentov, Prikl. Matem. i Mekh.,31, No. 5, 947 (1967).Google Scholar
  19. 19.
    N. G. Chetaev, Stability of Motion [in Russian], Nauka, Moscow (1965).Google Scholar
  20. 20.
    G. Korn and T. Korn, Handbook on Mathematics [in Russian], Nauka, Moscow (1968).Google Scholar
  21. 21.
    A. M. Lyapunov, The General Problem of Stability of Motion [in Russian], Gostekhizdat, Moscow (1950).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • A. A. Khentov
    • 1
  1. 1.Gor'kii State UniversityUSSR

Personalised recommendations