Strength of Materials

, Volume 26, Issue 6, pp 458–462 | Cite as

Effect of rolling direction on the strength and ductility characteristics of “wide” plates of alloy PT-3Vkt

  • A. A. Bryukhanov
  • A. R. Gokhman
  • Yu. G. Mikhailivskii
Scientific-Technical Section


A study is made of the orientation dependence of the mechanical properties of plates of alloy PT-3Vkt after warm cross rolling and subsequent cold rolling. Fourier series are found to describe the anisotropy of each property on the basis of empirical data and a strength criterion that considers the effect of hydrostatic pressure on the strength characteristics of the metal. A correlation analysis is performed to establish the relationship between the material's physical and mechanical properties.


Mechanical Property Fourier Anisotropy Ductility Correlation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. A. Adamesku, L. A. Bunin, S. V. Grebenkin, et al., “Effect of cross rolling on the texture of titanium alloy PT-3V,” Izv. Akad. Nauk SSSR, Met., No. 1, 62–64 (1984).Google Scholar
  2. 2.
    E. V. Egiz, A. A. Babareko, and O. S. Belova, “Formation of a twin texture after rolling and annealing in a pseudo α-alloy of titanium in the system Ti-Al-V,” ibid., No. 2, 151–154 (1988).Google Scholar
  3. 3.
    A. A. Bryukhanov, L. A. Bunin, and T. S. Sovkova, “Texture formation during rolling in titanium alloy PT-3V,” ibid., No. 3, 136–142.Google Scholar
  4. 4.
    A. A. Bryukhanov, A. R. Gokhman, Yu. G. Mikhailovskii, et al., “Effect of plastic deformation on the texture and properties of single crystals and polycrystals of alloy PT-3Vkt,” Fiz. Met. Metalloved.,56, No. 5, 175–180 (1991).Google Scholar
  5. 5.
    I. P. Talashkevich and Yu. V. Silokhin, “Symmetry of strain texture and its determination by x-ray methods,” ibid.,30, No. 1, 163–168 (1970).Google Scholar
  6. 6.
    G. P. Miklyaev and N. B. Fridman, Anisotropy of the Mechanical Properties of Metals [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  7. 7.
    E. K. Ashkenazi and E. V. Ganov, Anisotropy of Structural Materials (Handbook) [in Russian], Mashinostroenie, Leningrad (1980).Google Scholar
  8. 8.
    E. A. Mityushov and R. A. Adamesku, “Crystallographic foundations of certain yield criteria for anisotropic materials: Summary of Documents of the II All-Union Symposium “Strength of Structural Materials and Elements in a Complex Stress State,” Part 2, In-t Probl. Prochn. (1984), pp. 19–20.Google Scholar
  9. 9.
    V. M. Tsmots', V. S. Shtym, and P. F. Yurov, “Magnetic susceptibility of crystals of silicon carbide,” Fiz. Tekh. Poluprovodn.,15, No. 10, 1828–1830 (1981).Google Scholar
  10. 10.
    A. M. Kosevich and V. A. Shklovskii, “Dislocation model of ferromagnetism in nonmagnetic crystals,” Zh. Éksp. Teor. Fiz.,55, No. 3, 1131–1141 (1968).Google Scholar
  11. 11.
    A. R. Gokhman, A. A. Bryukhanov, and Yu. G. Mikhailovskii, “Use of the results of x-ray diffraction studies in predicting the mechanical properties of the system Ti-Al-V,” in: Summary of Documents of the II All-Union Conference “Applied X-Ray Diffraction Analysis of Metals,” LGTU, Leningrad (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. A. Bryukhanov
    • 1
  • A. R. Gokhman
    • 1
  • Yu. G. Mikhailivskii
    • 1
  1. 1.Odessa Pedagogical InstituteUkrain

Personalised recommendations