Skip to main content
Log in

The pharmacology of nisoldipine

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Nisoldipine is a calcium antagonist that specifically blocks the slow or voltage-dependent calcium channel up to the highest concentrations. This mode of action has been confirmed in pharmacological studies on isolated organs, electrophysiological and binding studies, and by the measurement of transmembrane calcium transport.

As with other dihydropyridine calcium antagonists, an interaction with intracellular calcium reservoirs and calmodulin seems to be of minor importance. The drug exhibits higher potency, longer duration of action, and a higher binding affinity in vitro and in vivo than nifedipine. In contrast to its vasodilating and spasmolytic activity, its negative inotropic effect occurs in vitro only after higher concentrations than after nifedipine. In whole animals a secondary positive inotropic effect occurs regularly owing to sympathetic counter-regulation. The influence of nisoldipine on cardiac stimulus formation and conduction is also very slight in anesthetized animals, and is completely eliminated in awake animals and humans by counter-regulation up to very high doses.

The cardiac antiischemic action of nisoldipine has been demonstrated in various ischemia models and is probably based predominantly on its afterload-reducing properties in addition to its spasmolytic effect on the coronary arteries. Various other suspected effects, for which there are isolated indications, e.g., inhibition of thromboxane synthesis, preload reduction, interaction with the transport of adenosine, and normalization of the sarcolemmal Na+, K+-ATPase activity, are probably of subordinate importance.

Its antihypertensive effect is explained primarily by lowering of the peripheral resistance. There are, however, some indications that nisoldipine exerts certain effects over and above pure vasodilation. The prevention of post ischemic calcium overloading in the renal tubule epithelium and the natriuretic effect are probably of importance in the therapeutic action.

Clinically, nisoldipine was found more potent and prolonged in its action in comparison with nifedipine. In comparative studies, nisoldipine, 10 mg once a day, was found equieffective with nifedipine 10 mg three times or 20 mg twice a day in angina or hypertension, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kass RS. Nisoldipine: A new, more selective calcium current blocker in cardiac Purkinje-fibers.J Pharmacol Exp Ther 1982;223:446–456.

    PubMed  Google Scholar 

  2. Sanguinetti M C, Kass RS. Voltage-dependent block of Ca2+ channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium antagonists.Circ Res 1984;55:336–348.

    PubMed  Google Scholar 

  3. Lathrop DA, Valle-Aguibra JR, Millard RW, Gaum WE, Hannon DW, Francis PD, Nakaya H, Schwartz A. Comparative electrophysiologic and coronary hemodynamic effects of diltiazem, nisoldipine, and verapamil on myocardial tissue.Amer J Cardiol 1982;49:613–620.

    PubMed  Google Scholar 

  4. Tung L, Morad M. Electrophysiological studies with Ca2+ entry blockers. In: Merril GF, Weiss HR, eds.Ca 2+ entry blockers, adenosine, and neurohumors. Baltimore-Munich: Urban and Schwarzenberg, 1983. Pp. 19–38.

    Google Scholar 

  5. Kazda S, Garthoff B, Meyer H, Schlossmann K, Stoepel K, Towart R, Vater W, Wehinger E. Pharmacology of a new calcium antagonistic compound, isobutyl methyl 1,4-di-hydro-2,6-dimethyl-4-(2-nitro-phenyl)-3,5-pyridine-dicarboxylate (nisoldipine, BAY K 5552).Arzneim Forsch/Drug Res 1980;30:2144–2162.

    Google Scholar 

  6. Itoh K, Kanmura Y, Kuriyama H, Suzuki H. Nisoldipine-induced relaxation in intact and skinned smooth muscles of rabbit coronary arteries.Brit J Pharmacol 1984;83:243–258.

    Google Scholar 

  7. Saida K, Breemen van C. Mechanism of Ca2+ antagonist-induced vasodilation.Circ Res 1983;52:137–142.

    PubMed  Google Scholar 

  8. Cauvin C, Lukeman S, Cameron J, Hwang O, Meisheri K. Theoretical basis for vascular selectivity of calcium antagonists.J Cardiovasc Pharmacol 1984; (Suppl 4):630–638.

    Google Scholar 

  9. Daniell LC, Barr EM, Leslie SW. Ca2+ uptake into rat whole brain synaptosomes unaltered by dihydropyridine calcium antagonists.J Neurochem 1983;41:1455–1459.

    PubMed  Google Scholar 

  10. Kazda S, Garthoff B, Knorr A. Interference of the calcium antagonist nisoldipine with the abnormal response of vessels from hypertensive rats to -adrenergic stimulation.J Cardiovasc Pharmacol 1985;7 (Suppl 6):S61-S65.

    Google Scholar 

  11. Meel van JCA, Timmermans PBMWM, Zwieten van PA. L'interaction entre les antagonistes du calcium et les recepteurs postsynaptiques vasculaires.J Pharmacologie (Paris) 1982;13:367–379.

    Google Scholar 

  12. Rimele TJ, Rooke TW, Aarhus LL, Vanhoutte PA. Alpha-1 adrenoceptors and calcium in isolated canine coronary arteries.J Pharmacol Exp Ther 1983;226:668–672.

    PubMed  Google Scholar 

  13. Cauvin C, Loutzenhiser R, Van Breemen C. Mechanisms of calcium antagonist-induced vasodilatin.Ann Rev Pharmacol Toxicol 1983;23:373–396.

    Google Scholar 

  14. Makita J, Kanmura J, Itoh T, Suzuki H, Kuriyama H. Effects of nifedipine derivatives on smooth muscle cells and neuromuscular transmission in the rabbit mesenteric artery.Naunyn-Schmiedeberg's Arch Pharmacol 1983;324:302–312.

    Google Scholar 

  15. Garthoff B, Kazda S, Towart R. The pharmacology of nisoldipine and nimodipine. In: Merrill GF, Scriabine A, eds.Calcium entry blockers, adenosine and neurohumors. Baltimore-Munich: Urban and Schwarzenberg, 1982. Pp. 109–118.

    Google Scholar 

  16. Kazda S, Towart R. The duration of action of calcium antagonists in vitro: a comparison of nifedipine and nisoldipine (BAY K 5552).Br J Pharmacol 1982;76:255P.

    Google Scholar 

  17. Drexler H, Flaim SF, Fields RH, Zelis R. Effects of nisoldipine on cardiocirculatory dynamics and cardiac output distribution in conscious rats at rest and during treadmill exercise.J Pharmacol Exp Ther 1985;232:376–381.

    PubMed  Google Scholar 

  18. Warltier DC, Meils CM, Gross GJ, Brooks HL. Blood flow in normal and acutely ischemic myocardium after verapamil, diltiazem and nisoldipine.J Pharmacol Exp Ther 1981;218:296–302.

    PubMed  Google Scholar 

  19. Norman JA, Ansell J, Phillipps MA. Dihydropyridine Ca2+ entry blockers selectively inhibit peak I cAMP phosphodiesterase.Eur J Pharmacol 1983;93:107–112.

    PubMed  Google Scholar 

  20. Wang T, Tsai LI, Schwartz A. Effects of verapamil, diltiazem, nisoldipine and felodipine on sarcoplasmic reticulum.Eur J Pharmacol 1984;100:253–261.

    PubMed  Google Scholar 

  21. Bolger GT, Gengo P, Klockowski R, Luchowski R. Characterization of binding of the Ca2+ channel antagonist, (3H)-nitrendipine, to guinea-pig ileal smooth muscle.J Pharmacol Exp Ther 1983;225:291–309.

    PubMed  Google Scholar 

  22. Ehlert FJ, Roeske WR, Hoga E, Yamamura HI. The binding of (3H)-nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex and ileum of rats.Life Sci 1982;30:2191–2200.

    PubMed  Google Scholar 

  23. Fosset M, Jaimovich E, Delpont E, Lazdunsky M.3H-labelled nitrendipine receptors in skeletal muscle. Properties and preferential localization in transverse tubules.J Biol Chem 1983;258:6086–6092.

    PubMed  Google Scholar 

  24. Gould RJ, Murphy KM, Snyder SH. Tissue heterogeneity of calcium channel antagonist binding sites labelled by (3H)-nitrendipine.Mol Pharmacol 1984;25:235–241.

    PubMed  Google Scholar 

  25. Williams LT, Tremble B. Binding of a calcium antagonist (3H)-nitrendipine to high affinity sites in bovine aortic smooth muscle and canine cardiac membranes.J Clin Invest 1982;70:209–212.

    PubMed  Google Scholar 

  26. Miller WC, Moore JB. High affinity binding sites for (3H)-nitrendipine in rabbit uterine smooth muscle.Life Sci 1984;34:1717–1724.

    PubMed  Google Scholar 

  27. Cheng JP, Bewtra A, Townley RG. Identification of calcium antagonist receptor binding sites using (3H)-nitrendipine in bovine tracheal smooth muscle membranes.Experientia 1984;40:267–269.

    PubMed  Google Scholar 

  28. Pan M, Janis RA, Triggle DJ. Comparison of the equilibrium and kinetic binding characteristics of tritiated Ca2+ channel inhibitors, nisoldipine, nimodipine, nitrendipine and nifedipine.Pharmacologist 1983;25:202 Abstr.523.

    Google Scholar 

  29. Lappe RW, Barron KW, Faber JE, Brody MJ. Selective antagonism of humoral versus neural vasoconstrictor responses by nisoldipine.Hypertension 1985;7:216–222.

    PubMed  Google Scholar 

  30. Altura BM, Altura BT, Grebewold A. Selective cerebral vasodilator actions of a new dihydropyridine.Stroke 1984 15:186.

    Google Scholar 

  31. Maxwell GM, Crompton S, Rencis V. Effect of nisoldipine upon the general and coronary hemodynamics of the anesthetized dog.J Cardiovasc Pharmacol 1982;4:393–397.

    PubMed  Google Scholar 

  32. Warltier DC, Zyvoloski MG, Gross GJ, Brooks HC. Comparative actions of dihydropyridine slow channel Ca2+ blocking agents in conscious dogs.J Pharmacol Exp Ther 1984;230:376–382.

    PubMed  Google Scholar 

  33. Schwartz JB, Herre JM, Lewis RM. The electrophysiologic effect of nisoldipine in the conscious dog.Am Heart J 1985;109:529–532.

    PubMed  Google Scholar 

  34. Drexler H, Truog AG, Zelis R, Flaim SF. Regional vascular and hemodynamic effects of orally administered nisoldipine in conscious rats.J Cardiovasc Pharmacol 1986;8:151–155.

    PubMed  Google Scholar 

  35. Tumas J, Deth R, Kloner RA. Effects of nisoldipine, a new calcium antagonist on myocardial infarct size and cardiac dynamics following acute myocardial infarction.J Cardiovasc Pharmacol 1985;7:361–367.

    PubMed  Google Scholar 

  36. Faria DB, Iwasaki T, Endo T, Cheung W. Calcium antagonists: Their effectiveness in decreasing the occurrence of ventricular fibrillation and reducing infarct size after a coronary artery occlusion.Am J Cardiol 1981;47:443.

    Google Scholar 

  37. Verdouw PD, Slager CF, Breemen van RH, Verkeste CM. Is nisoldipine capable of reducing left ventricular preload?Eur J Pharmacol 1984;98:137–140.

    PubMed  Google Scholar 

  38. Fagbemi O, Parratt JR. Calcium antagonists prevent early post-infarction ventricular fibrillation.Eur J Pharmacol 1982;75, No.4:179–185.

    Google Scholar 

  39. Thandroyen FT, McCarthy J, Opie LH. Extracellular calcium, sarcoplasmic reticulum calcium, and reperfusion ventricular fibrillation.Circulation 1984;70:126.

    Google Scholar 

  40. Perez JE, Lucas C, Henry PD. Experimental coronary artery spasm in intact dogs: Angiographic characterization, recording of flow, and response to dihydropyridine.Am J Cardiol 1981;47:449.

    Google Scholar 

  41. Perez JE, Saffitz JE, Gutierrez FA, Henry PD. Coronary artery spasm in intact dogs induced by potassium and serotonin.Circ Res 1983;52:423–431.

    PubMed  Google Scholar 

  42. Alexander GJ, Sovca JD, Segal SA, Pearle DL, Gillis RA. Experimental coronary artery spasm: prevention by nisoldipine and nifedipine but not by verapamil.Clin Res 1983;31:166A.

    Google Scholar 

  43. Okamatusu S, Peck RC, Lefer AM. Effect of calcium channel blockers in arachidonate-induced sudden death in rabbits.Proc Soc Exp Biol Med 1981;166:551–555.

    PubMed  Google Scholar 

  44. Smith EF, Schmunk GA, Lefer AM. Antagonism of thromboxane analog-induced vasoconstriction by non-steroidal anti-inflammatory agents.J Cardiovasc Pharmacol 1981;3:791–800.

    PubMed  Google Scholar 

  45. Schmunk GA, Lefer AM. Anti-aggregatory actions of calcium channel blockers in cat platelets.Res Commun Chem Pathol Pharmacol 1982;35:179–187.

    PubMed  Google Scholar 

  46. Jong de JW, Huizer T. Reduced glycolysis by nisoldipine treatment of ischemic heart.J Cardiovasc Pharmacol 1985;7:497–500.

    PubMed  Google Scholar 

  47. Jong de JW, Huizer T. Effect of nisoldipine on myocardial nucleotide metabolism and function during temporary ischemia.Int Symp on Calcium Entry Blockers and Tissue Protection, Rome, 1984;32.

  48. Marangos PJ, Finkel MS, Verma A, Maturi MF, Patel J, Patterson RE. Adenosine uptake site in dog heart and brain: interaction with calcium antagonists.Life Sci 1984;35:1109–1116.

    PubMed  Google Scholar 

  49. Takahashi K, Kako KJ. The effect of Ca2+ channel antagonist, nisoldipine, on the ischemia-induced change of canine sarcolemmal membrane.Basic Res Cardiol 1983;78:326–327.

    PubMed  Google Scholar 

  50. Gabel M, Millard RW, Fowler NO. Effects of vasodilators on organ blood flow and cardiac output during cardiac tamponade.Fed Proc 1981;40:526.

    Google Scholar 

  51. Cohen DM, Boucher M. Depressor sensitivity of dihydropyridine and verapamil in SH and 2K, 1C Goldblatt (RH) hypertensive rat.Pharmacologist 1982;24:138.

    Google Scholar 

  52. Knorr A. Nisoldipine (BAY K 5552), a new Ca2+ antagonist: Antihypertensive effects in conscious unrestrained renal hypertensive dogs.Arch Int Pharmacodyn Ther 1982;260:141–150.

    PubMed  Google Scholar 

  53. Hall CE, Hungerford S. Prevention of spontaneous and glucocorticoid hypertension in rats by nisoldipine.Physiol Behav 1983;30:899–903.

    PubMed  Google Scholar 

  54. Johnson EL, McDougall JG, Coghlan JP, Denton DA, Scoggins BA. Potassium stimulation of aldosterone secretion in vivo is reversed by nisoldipine, a Ca2+ transport antagonist.Endocrinology 1984;114:1466–1468.

    PubMed  Google Scholar 

  55. Stasch JP, Kazda S, Hirth C, Knorr A, Morich F, Neuser D. Effect on atrial natriuretic peptides and prevention of hypertension by long-term treatment with nisoldipine in SHR.J Cardiovasc Pharmacol 1986;8:1310.

    Google Scholar 

  56. Garthoff B, Kazda S. Prevention and reversal of salt-induced hypertension in DS-Dahl rats by nisoldipine.Fed Proc 1982;41:1664.

    Google Scholar 

  57. Kazda S, Garthoff B, Luckhaus G. Ca2+ antagonists in hypertensive disease: Experimental evidence for a new therapeutic concept.Postgrad Med J 1983;59 (Suppl 2):78–83.

    Google Scholar 

  58. Garthoff B, Hirth C, Federmann A, Kazda S, Stasch J-P. Renal effects of 1,4-dihydropyridines in animals models of hypertension and renal failure. Proc. Sat. Symp. 2nd Int. Conf. on Diuretics, June 27, 1986.J Cardiovasc Pharmacol 1986; Suppl.

  59. Loutzenhiser R, Epstein M, Horton C, Sonke P. Reversal by the calcium antagonist nisoldipine of norepinephrine-induced reduction of GFR.J Pharmacol Exp Ther 1985, 232:382–387.

    PubMed  Google Scholar 

  60. Giebisch G, Guckian VA, Klein-Robbenhaar G, Klein-Robbenhaar Mt. Renal clearance and micropuncture studies of nisoldipine. Effects in spontaneously hypertensive rats. In: Giebisch G, Scriabine A, Garthoff B, eds. Renal effects of dihydropyridine-type calcium antagonists.J Cardiovasc Pharmacol 9 (Suppl.), in press.

  61. Kauker ML, Zeigler DW, Zawada ET. Renal tubular effect of nisoldipine, a calcium channel blocker, in rats, In: Giebisch G, Scriabine A, Garthoff B, eds. Renal effects of dihydropyridine-type calcium antagonists.J Cardiovasc Pharmacol 9 (Suppl.), in press.

  62. Hertle L, Garthoff B, Chur C, Funke PJ, Kazda S. Protective effects of Ca2+ channel blocker nisoldipine in postischemic acute renal failure in the rats.J Urol 1984;131 256A.

    Google Scholar 

  63. Garthoff B, Hertle L. Calcium antagonist in ischemic acute renal failure: Improvement of function and morphologic damage by nisoldipine. In: Giebisch G, Scriabine A, Garthoff B, eds. Renal effects of dihydropyridine-type calcium antagonists.J Cardiovasc Pharmacol 9 (Suppl.), in press.

  64. Archer SC, Yankovich RD, Weir EK. Nisoldipine is an effective pulmonary vasodilator.Fed Proc 1984;43:920 Abstr. 3715.

    Google Scholar 

  65. Archer SL, Yankovich RD, Chesler E, Weir EK. Comparative effects of nisoldipine, nifedipine, and bepridil on experimental pulmonary hypertension.J Pharmacol Exp Ther 1985;233:12–17.

    PubMed  Google Scholar 

  66. Lippton HL, Kadowitz PJ, Hyman AL. Selective calcium channel blockade by nisoldipine in intact pulmonary vascular bed.Clin Res 1983;31:885.

    Google Scholar 

  67. Nandiwada PA, Kadowitz PJ, Lippton H, Hyman AL, Ignarro LJ. Pulmonary responses to nisoldipine.Clin Res 1981;29:846A.

    Google Scholar 

  68. Malaisse WJ, Sener A. Calcium antagonists and islet function — XII comparison between nifedipine and chemically related drugs.Biochem Pharmacol 1981;30:1039–1041.

    PubMed  Google Scholar 

  69. Latta G, Verheggen R, Rücker W, Schroer K. Inhibition of platelet aggregation and thromboxane formation in man by calcium antagonists.Naunyn-Schmiedeberg's Arch Pharmacol 1983;324 (Suppl.) R 49.

    Google Scholar 

  70. Conn PM, Rogers DC, Seay SG. Structure-function relationship of calcium ion channel-antagonists at the pituitary gonadotrope.Endocrinology 1983;113:1592–1595.

    PubMed  Google Scholar 

  71. Enyeart JJ, Aizawa T, Hinkle PM. Dihydropyridines (DHPs) are potent modulators of hormone secretion from pituitary cells.Pharmacologist 1984;26:134 Abstr.47.

    Google Scholar 

  72. Serruys PW, Suryapranata H, Planellas J, Wijins W, Vanhalleweyk GLJ, Soward A, Jaski BE, Hugenholtz PG. Acute effects of intravenous nisoldipine on left ventricular function and coronary hemodynamics.Am J Cardiol 1985;56:140–146.

    PubMed  Google Scholar 

  73. Silke B, Verma SP, Midtbo KA, Müller P, Frais MA, Reynolds G, Taylor SH. A haemodynamic study of the effects of combined slow-calcium channel blockade (nisoldipine) and beta-blockade (metoprolol) in coronary heart disease.Int J Cardiol 1986;13:231–241.

    PubMed  Google Scholar 

  74. Vogt A, Neuhaus K, Kreuzer H. Hemodynamic effects of the new vasodilator drug BAY K 5552 in man.Arzneim Forsch/Drug Res 1986;36 (II):2162–2164.

    Google Scholar 

  75. Tartagni F, Ruggiero S, Melandri G, Beato E, Dondi M, Monetti N, Magnanc B. Effects of oral nisoldipine in ischemic heart disease.Arzneim Forsch/Drug Res 1986;36 (II):1528–1531.

    Google Scholar 

  76. Hess OM, Krayenbühl HP. Die antianginöse Wirkung von Calcium-Antagonisten, dargestellt am Beispiel des Nisoldipin.Schweiz med Wschr 1984;114:1126–1131.

    PubMed  Google Scholar 

  77. Lam J, Chaitman BR, Crean P, Blum R, Waters DD. A does-ranging, placebo-controlled, double-blind trial of nisoldipine in effort angina: Duration and extent of antianginal effects.JACC 1985;6:447–452.

    PubMed  Google Scholar 

  78. Lopez LM, Rubin MR, Holland JP, Mehta JL. Improvement in exercise performance with nisoldipine, a new second-generation calcium blocker, in stable angina patients.Am Heart J 1985;110:991–996.

    PubMed  Google Scholar 

  79. Reicher-Reiss H, Vered Z, Goldburt U, Neufeld HN. Efficacy of nisoldipine compared to nifedipine in chronic stable angina. Mediterranean symp. on calcium antagonists nifedipine, nitrendipine, nisoldipine; Trieste, Sept. 26–27, Abstr.; 1986.

  80. Vogt A, Kreuzer H. Hemodynamic effects of nisoldipine in chronic congestive heart failure.Arzneim Forsch/Drug Res. 1983;33 (I):877–879.

    Google Scholar 

  81. Rousseau MF, Vincent MF, Van Hoof F, Van Den Berghe G, Charlier AA, Pouleur H. Effects of nicardipine and nisoldipine on myocardial metabolism, coronary blood flow and oxygen supply in angina pectoris.Am J Cardiol 1984;54:1189–1194.

    PubMed  Google Scholar 

  82. Silke B, Frais MA, Muller P, Verma SP, Reynolds G, Taylor SH. Haemodynamic dose-response effects of intravenous nisoldipine in coronary artery disease.Br J Clin Pharmacol 1985;20:675–680.

    PubMed  Google Scholar 

  83. Klein HH, Schwarck KH, Rauschning W, Kreuzer H. Effect of nisoldipine on electrophysiological parameters in patients pretreated with β-blockers.Arzneim Forsch/Drug Res 1984 34 (II):1035–1037.

    Google Scholar 

  84. Kimchi A, Ellrodt AG, Charuzi Y, Shell W, Murata GH. Salutary hemodynamic and sustained clinical beneficial effects of nisoldipine, a new calcium channel blocker, in patients with recurrent ischemia and severe heart failure.Am Heart J 1985;110:496–498.

    PubMed  Google Scholar 

  85. Kiowski W, Erne P, Pfisterer M, Mueller J, Buehler FR, Ritz R, Burkart F. Haemodynamische Wirkungen von Nisoldipin (N) bei Patienten mit Herzinsuffizienz.Schweizer Med Wochenschrift 1985;18:28.

    Google Scholar 

  86. Rosendorff C, Goodman C. Double-blind double-dummy crossover study of the efficacy and safety of nisoldipine (BAY K 5552) versus nifedipine.Curr Ther Res 1985;37:912–920.

    Google Scholar 

  87. Wambach G, Breuer G, Kaufmann W. Hypotensive Eigenschaften von Nisoldipin.Arzneim Forsch/Drug Res 1984;34 (I):620–623.

    Google Scholar 

  88. Odigwe CO, McCulloch AJ, Williams DO, Turnbridge WMG. A trial of the calcium antagonist nisoldipine in hypertensive non-insulin-dependent diabetic patients.Diabetic Medicine 1986;3:463–467.

    PubMed  Google Scholar 

  89. Laederach U, Weidmann P, Lavener F, Gerber A, Ziegler WH. Comparative acute effects of the calcium channel blockers tiapamil, nisoldipine and nifedipine on blood pressure and some regulatory factors in normal and hypertensive subjects.J Cardiovasc Pharmacol 1986;8:294–302.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knorr, A. The pharmacology of nisoldipine. Cardiovasc Drug Ther 1, 393–402 (1987). https://doi.org/10.1007/BF02209081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02209081

Key words

Navigation