Clinical Rheumatology

, Volume 11, Issue 2, pp 254–260 | Cite as

Inhibition of superoxide anion release from human polymorphonuclear leukocytes by N-acetyl-galactosamine and N-acetyl-glucosamine

  • M. Kamel
  • M. Alnahdi


This study shows that N-acetyl-galactosamine and N-acetyl-glucosamine and diminish the production of superoxide anion from cytochalasin-B treated PMNs stimulated with FMLP. Inhibition ranged from 80.9% to 1.8%. N-acetyl-galactosamine was superior to N-acetyl-glucosamine, but both showed their action in a dose — related fashion. The mannosamine may diminish the superoxide production, but without a statistical significance. Other sugars such as L-fucose, D-fucose and D-glucose failed to induce inhibition of superoxide generation. Previous reports showed that sugars interfere with carbohydrates lectins interaction. This study shows that aminosugars can do more than interfere with carbohydrates-lectin interaction. The mechanism is not completely known yet. The question whether aminosugars affect cell-cell interaction, regulation of respiratory burst, inflammatory mediators functions, or the glucose uptake and utilization needs further study.

Key words

Galactosamine Glucosamine Polymorphonuclear Leukocyte Enzyme Secretion Superoxide Anion Rheumatoid Arthritis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, E.D. Rheumatoid arthritis. In: Textbook of Rheumatology 3 rd ed. Eds: Kelly, W.N., Harris E.D. Ruddy, S., Sledge, C.B. Philadelphia, W.B. Saunders Company, 1989, 905–942.Google Scholar
  2. 2.
    Fantone, J.C., Ward, P.A., Role of oxygen-dependent inflammatory reaction. Am J Pathol 1982, 107, 395–418.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Biemond, P., Swaak, A.J.G., Van Eijk, H.G. et al. Superoxide dependent iron release from B-ferritin in inflammatory disease. Free Radical Biol Med 1988, 4, 185–98.CrossRefGoogle Scholar
  4. 4.
    Babior, B.M., Kipnes, R.S., Curnutte, J.T. Biological defense mechanism: the production by leucocytes of superoxide, a potent bactericidal agent. J Clin Invest 1973, 52, 741–4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Babior, B.M. Oxygen-dependent microbial killing by phagocytes: N Eng J Med 1978, 298, 659–721.CrossRefGoogle Scholar
  6. 6.
    Klebanoff, S.J. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol 1975, 12, 117–142.PubMedGoogle Scholar
  7. 7.
    Cheson, B.D., Curnette, J.T., Babior, B.M. The oxidative killing mechanisms of the neutrophil. Prog Clin Immunol 1977, 3, 1–65.PubMedGoogle Scholar
  8. 8.
    Kinane, D.F., Weir, D.M., Blackwell, C.C., Winstanley, F.P.,Binding of Neisseria Gonorrhoeae by lectin-like receptors on human phagocytes. J Clin Lab Immunol 1984, 13, 107–119.PubMedGoogle Scholar
  9. 9.
    Klempner, M.S., Rocklin, R.E. Specific binding of leukocyte inhibitory factor to neutrophil plasma membranes. J Immunol 1982, 128, 5, 2040–43.PubMedGoogle Scholar
  10. 10.
    Doolittle, R.L., Packman, C.H., Lichtman, M.A. Aminosugars enhance recognition and phagocytosis of particles by neutrophils. Blood 1983, 62, 2, 697–601.PubMedGoogle Scholar
  11. 11.
    Korchak, H.M., Weissmann, G. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc Natl Acad Sci 1978, 75, 3818–3822.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sharon, N., Lis, H., Lectins: cell-cell agglutinating and sugar specific proteins. Nature 1972, 177, 949.Google Scholar
  13. 13.
    Boyum, A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Lab Invest 1968, 21, 77.CrossRefGoogle Scholar
  14. 14.
    Zurier, R.B., Hoffstein, S., Weissmann, G. Mechanisms of lysosomal enzyme release from human leukocytes, I. Effect of cyclic nucleotides and colchicine. J Cell Biol 1973, 58, 27–41.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dungam, P., Anderson, C., Rich, A.M., Weissmann, G. Stimulus response coupling in sponge cell aggregation, evidence for calcium as an intracellular messenger. Proc Natl Acad Sci 1983, 80, 4756–60.CrossRefGoogle Scholar
  16. 16.
    Goldstein, I.M., Cerqueira, M., Lind, S., Kaplan, H.B. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J Clin Invest 1977, 59, 249–254.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Goldstein, I.M., Roos, D., Weissmann, G., Kaplan, H.B. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest 1975, 56, 1155–1163.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Metcalf, J.A. Laboratory Manual of Neutrophil Function. Raven Press, 1986, 111.Google Scholar
  19. 19.
    Gay, M., Lukens, J.N., English, D.K. Differential inhibition of neutrophil superoxide generation by non-steroidal anti-inflammatory drugs. Inflammation 1984, 8, 209–22.CrossRefPubMedGoogle Scholar
  20. 20.
    Smolen, J.E, Korchak, H.M., Weissmann, G. Initial kinetics of lysosomal enzymes secretion and superoxide anion generation of human polymorphonuclear leukocytes. Inflammation 1980, 4, 145–63.CrossRefPubMedGoogle Scholar
  21. 21.
    Dewald, B., Baggiolini, M., Curnutte, J.T., Babior, B.M. Subcellular localization of the superoxide-forming enzyme in human neutrophils. J Clin Invest 1979, 63, 21–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Havell, F.A., Yamazaki, S., Vilcek, J. Altered molecular species of human interferon produced in the presence of inhibition of glycosylation. J Biol Chem 1977, 252(12) 4425–7.PubMedGoogle Scholar
  23. 23.
    Eagon, P.K., Heath, E.C. Glycoprotein biosynthesis in myeloma cells. Characterization of non-glycosylated immunoglobulins light chain secreted in the presence of 2-deoxy-D-glucose. J Biol Chem 1977, 252(7), 2372–8.PubMedGoogle Scholar
  24. 24.
    Berman, S.I., Schwarting, G.A., Kolodny, E.H., Babior, B.M. Incorporation of glucosamine by activated human neutrophils. J Lab Clin Med 1980, 96, 893–901.Google Scholar
  25. 25.
    Halliwell, B., Hoult, J.R.S., Blake, D.R. Oxidants, inflammation and the anti-inflammatory drugs. FASEB J 1988, 2, 2867–2873.PubMedGoogle Scholar
  26. 26.
    Halliwell, B., Gutteridge, J.M.C., The antioxidants of human extracellular fluids. Arch Biochem Biophys 1990, 280, 1–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Biemond, P., Han, H., Swaak, A.J.G., Koster, J.F. Diminished superoxide production of synovial fluid neutrophils in patients with rheumatoid arthritis following piroxicam treatment. Scand J Rheumatology 1990, 19, 151–156.CrossRefGoogle Scholar
  28. 28.
    Van Epps, D.E., Geiwe, S., Potter, J., Games, G. Alterations in neutrophil superoxide production following piroxicam therapy in patients with rheumatoid arthritis. Inflammation 1987, 11, 59–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Kaplan, H.B., Edelson, H.S., Korchak, H.M., Given, W.P., Abramson, S., Weissmann, G. Effects of non-steroidal anti-inflammatory agents on human neutrophil functions in vitro and in vivo. Biochem Pharmacol 1984, 33, 371–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Biemond, P., Swaak, A.J.G., Penders, J.M.A., Beindroff, C.M., Koster, J.F. Superoxide production by polymorphonuclear leukocytes in rheumatoid arthritis and osteoarthritis: In vivo inhibition by antirheumatic drug piroxicam due to interference with activation of the NADPH-oxidase. Ann Rheum Dis 1986, 45, 249–55.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Acta Medica Belgica 1992

Authors and Affiliations

  • M. Kamel
    • 1
    • 2
  • M. Alnahdi
    • 3
  1. 1.Department of RheumatologyAzhar UniversityCairoEgypt
  2. 2.Dr. Fakhry HospitalDhahranSaudi Arabia
  3. 3.Department of Internal MedicineKing Faisal UniversityDammamSaudi Arabia

Personalised recommendations