Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion culture

  • J. McN Sieburth
  • K. M. Johnson
  • C. M. Burney
  • D. M. Lavoie
Pelagic Ecosystems

Abstract

A scheme has been developed for observing diurnal changes in dissolved organic matter in the photic zone and correlating the with specific microbial fractions and their rates of growth and uptake. Particulate ATP for procaryote and protist size fractions were augmented by pigment analyses to differentiate phototroph from phagotroph dominated accumulations. A temporary daytime increase in carbohydrates of some 32% above pre-dawn threshold values accounted for 41% of the labile DOC. Polysaccharide and monosaccharide maxima were mainly associated with phagotrophic protists, the monosaccharide maxima occurring during the daytime. Apparent maximum in situ heterotrophic uptake rates of this released DOC of 9.8 μg C L−1 hr−1 agree well with the growth rates of natural populations of the bacterial size fraction (picoplankton) on in situ water in diffusion culture of 5.1 μg C L−1 hr−1. This growth was associated with phototroph maxima but occurred only during the afternoon and evening hours and not during the early morning and intense daylight hours. Proposed follow-up studies are outlined.

Keywords

Polysaccharide Uptake Rate Monosaccharide Size Fraction Dissolve Organic Matter 

Literature Cited

  1. Allen, P. D., III. 1972. Development of the luminescence biometer for microbial detection. Devs ind. Microbiol.14, 67–73.Google Scholar
  2. Anderson, G. C. & Zeutschel, R. P., 1970. Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean. Limnol. Oceanogr.15, 402–407.Google Scholar
  3. Antia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K. & Strickland, J. D. H., 1963. Further measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr.8, 166–183.Google Scholar
  4. Burney, C. M. & Sieburth, J. McN., 1977. Dissolved carbohydrates in seawater. II. A spectrophotometric procedure for total carbohydrate analysis and polysaccharide estimation. Mar. Chem.5, 15–28.Google Scholar
  5. Cheer, S., Gentile, J. H. & Hegre, C. S., 1974. Improved methods for ATP analysis. Analyt. Biochem.60, 102–114.PubMedGoogle Scholar
  6. Hamilton, R. D. & Holm-Hansen, O., 1967. Adenosine triphosphate content of marine bacteria. Limnol. Oceanogr.12, 319–324.Google Scholar
  7. Hinga, K. R. & Sieburth, J. McN. An improved method for reverse flow concentration of particles. (In prep.).Google Scholar
  8. Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H., 1965. Fluorometric determination of chlorophyll. J. Cons. perm. int. Explor. Mer,30, 3–15.Google Scholar
  9. —, & Booth, C. R., 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr.11, 510–519.Google Scholar
  10. Horne, A. J., Fogg, G. E. & Eagle, D. J., 1969. Studies in situ of the primary production of an area of inshore Antarctic Sea. J. mar. biol. Ass. U. K.49, 393–405.Google Scholar
  11. Johnson, K. M. & Sieburth, J. McN., 1977. Dissolved carbohydrates in seawater. I. A precise spectrophotometric analysis for monosacharides. Mar. Chem.5, 1–13.Google Scholar
  12. Lavoie, D. M. & Sieburth, J. McN. Culture of natural populations of heterotrophs from the picoplankton on diffusing nutrients from seawater. Appl. environm. Microbiol. (In press).Google Scholar
  13. Menzel, D. W. & Vaccaro, R. F., 1964. The measurement of dissolved organic and particulate carbon in seawater. Limnol. Oceanogr.9, 138–142.Google Scholar
  14. Mills, E. L., 1975. Benthic organisms and the structure of marine ecosystems. J. Fish. Res. Bd Can.,32, 1657–1663.Google Scholar
  15. Rogick, M. D., 1965. Search for sargassum. Turtox News,43 (8), 178–181.Google Scholar
  16. Schultz, J. S. & Gerhardt, P., 1969. Dialysis culture of microorganisms: Design, theory, and results. Bact. Rev.,33, 1–47.PubMedGoogle Scholar
  17. Sieburth, J. McN. & Lavoie, D. M. Design of a standard method for estimating bacterioplankton biomass and production. Soviet-American J. mar. Pollut. (In press).Google Scholar
  18. — Willis, P.-J., Johnson, K. M., Burney, C. M., Lavoie, D. M., Hinga, K. R., Caron, D. A., French, F. W., III, Johnson, P. W. & Davis, P. G., 1976. Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic. Science, N. Y.194, 1415–1418.Google Scholar
  19. Sorokin, Yu. I., 1971. On the role of bacteria in the productivity of tropical oceanic waters. Int. Revue ges. Hydrobiol.,56, 1–48.Google Scholar
  20. Steele, J. H., 1974. The structure of marine ecosystems. Harvard University Press, Cambridge, Mass., 128 pp.Google Scholar
  21. Strickland, J. D. H., 1971. Microbial activity in aquatic environments. Symp. Soc. gen. Microbiol.21, 231–253.Google Scholar
  22. Wiebe, W. J. & Bancroft, K., 1975. Use of the adenylate energy charge ratio to measure growth state of natural microbial communities. Proc. natn. Acad. Sci. U.S.A.72, 2112–2115.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1977

Authors and Affiliations

  • J. McN Sieburth
    • 1
  • K. M. Johnson
    • 1
  • C. M. Burney
    • 1
  • D. M. Lavoie
    • 1
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandKingstonUSA

Personalised recommendations