Advertisement

Journal of Optimization Theory and Applications

, Volume 83, Issue 3, pp 447–461 | Cite as

Airfoil design optimization using the Navier-Stokes equations

  • S. Eyi
  • J. O. Hager
  • K. D. Lee
Contributed Papers

Abstract

A design optimization technique is presented which couples a computationally efficient Navier-Stokes code with a numerical optimization algorithm. The design method improves the aerodynamic performance of an airfoil subject to specified design objectives and constraints. Recent advances in computers and compputational fluid dynamics have permitted the use of the Navier-Stokes equations in the design procedure to include the nonlinear, rotational, viscous physics of transonic flows. Using numerical optimization guarantees that a better design will be produced even with strict design constraints. The method is demonstrated with several examples at transonic flow conditions.

Key Words

Airfoil design constrained optimization Navier-Stokes equations transonic aerodynamics computational fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volpe, G., andMelnik, R. E.,The Design of Transonic Airfoils by a Well-Posed Inverse Method, International Conference on Inverse Design Concepts in Engineering Sciences, Austin, Texas, 1984.Google Scholar
  2. 2.
    Giles, M. B., andDrela, M.,Two-Dimensional Transonic Aerodynamics Design Method, AIAA Journal, Vol. 25, pp. 1199–1205, 1987.Google Scholar
  3. 3.
    Vanderplaats, G. N.,Efficient Algorithm for Numerical Airfoil Optimization, Journal of Aircraft, Vol., 16, pp. 842–847, 1979.Google Scholar
  4. 4.
    Mani, K. K.,Design Using Euler Equations, AIAA Paper 84-2166, 1984.Google Scholar
  5. 5.
    Chen, M. S., andChow, C. Y.,Numerical Optimization Design of Transonic Airfoils, Numerical Methods in Laminar and Turbulent Flow, Edited by C. Taylor, P. Gresho, R. L. Sani, and J. Haüser, Pineridge Press, Swansea, England, Vol. 6, Part 1, pp. 905–915, 1989.Google Scholar
  6. 6.
    Lee, K. D., andEyi, S.,Aerodynamic Design via Optimization, Proceedings of the 17th ICAS Congress, pp. 1808–1818, 1990.Google Scholar
  7. 7.
    Lee, K. D., andEyi, S.,Transonic Airfoil Design by Constrained Optimization, Proceedings of the AIAA 9th Applied Aerodynamics Conference, Baltimore, Maryland, Vol. 2, pp. 677–687, 1991.Google Scholar
  8. 8.
    Hirose, N., Takanashi, S., andKawai, N.,Transonic Airfoil Design Procedure Utilizing a Navier-Stokes Analysis Code, AIAA Journal, Vol. 25, pp. 353–359, 1987.Google Scholar
  9. 9.
    Malone, J. B., Narramore, J. C. andSankar, L. N.,Airfoil Design Method Using the Navier-Stokes Equations, Journal of Aircraft, Vol. 28, pp. 216–224, 1991.Google Scholar
  10. 10.
    Birckelbaw, L.,Inverse Airfoil Design Using the Navier-Stokes Equation, Proceedings of the AIAA 7th Applied Aerodynamics Conference, Seattle, Washington, pp. 346–353, 1989.Google Scholar
  11. 11.
    Martinelli, L., Jameson, A., andGrasso, F.,A Multigrid Method for the Navier-Stokes Equations, AIAA Paper 86-0208, 1986.Google Scholar
  12. 12.
    Vanderplaats, G. N.,Numerical Optimization Techniques for Engineering Design, McGraw-Hill Book Company, New York, New York, 1984.Google Scholar
  13. 13.
    Vanderplaats, G. N., andHansen, S. R.,Dot Users Manual, VMA Engineering, Goleta, Georgia, 1989.Google Scholar
  14. 14.
    Hicks, R. M., andHenne, P. A.,Wing Design by Numerical Optimization, Journal of Aircraft, Vol. 15, pp. 407–412, 1978.Google Scholar
  15. 15.
    Ramamoorthy, P., andPadmavathi, K.,Airfoil Design by Optimization, Journal of Aircraft, vol. 14, pp. 219–221, 1977.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • S. Eyi
    • 1
  • J. O. Hager
    • 1
  • K. D. Lee
    • 1
  1. 1.Department of Aeronautical and Astronautical EngineeringUniversity of IllinoisUrbana

Personalised recommendations