Skip to main content
Log in

ADFR therapy in the prevention of bone loss after menopause

  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Summary

Estrogens retard bone loss after menopause and constitute the most logical therapy for the prevention of postmenopausal osteoporosis. Estrogens are contraindicated in some circumstances and some postmenopausal women are unwilling to accept them. We have used ADFR therapy as an alternative in the prevention of postmenopausal bone loss. One hundred women in the early postmenopausal period (6–24 months since the last menses) were introduced into the study. 50 were treated with placebo and 50 were treated with ADFR therapy (phosphorus 1.5 gr/day during 3 days, followed by SCT 100 UI/day during 10 days and calcium 1 gr/day). After 77 days without any therapy we repeated the cycles every 3 months. Bone mass was evaluated at the beginning and at 3, 6, 12 and 18 months by dual-photon absorptionmetry lumbar spine. In the control group, the mean spinal BMD decreased 7.31% after 12 months and 6.16% after 18 months (p>0.05). The ADFR group only had a mean spinal BMD decrease of 3.79% and 1.1% after 12 and 18 months respectively (NS). Bone loss was greater in control than in ADFR group after 12 and 18 months (p<0.05 at both times). We conclude that phosphorus and calcitonin like ADFR therapy may be a useful alternative to estrogen for the prevention of accelerated bone loss after menopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iskrant, A.P., Smith, R.W. Osteoporosis in women 45 years and over related to subsequent fractures. Public Health 1969, 84, 33.

    Google Scholar 

  2. Jensen, G.F., Christiansen, C., Boesen, J., Hegedüs, V., Transbøl, I. Epidemiology of postmenopausal spinal and long bone fractures: A unifying approach to postmenopausal osteoporosis. Clin Orthop 1982, 166, 75.

    Google Scholar 

  3. Melton, L.J., Riggs, B.L. Epidemiology of age-related fractures. In: The Osteoporotic Syndrome: Detection, Prevention and Treatment. Ed: L.V. Avioli. Grune and Stratton. Inc., New York, 1983, pp. 45–72.

    Google Scholar 

  4. Cummings, S.R., Kelsey, J.L. Nevitt M.C., O'Dowd, K.L. (1.985): Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 1985, 7, 178.

    Google Scholar 

  5. Jensen, J.S., Bagger, J. Long-term social prognosis after hip fractures. Acta Orthop Scand, 1982, 53, 97.

    Google Scholar 

  6. Garraway, W.M., Stauffer, R.N., Kurland, L.R., O'Fallow W.M. (1.979): Limb fracture in a defined population. Orthopedic treatment and utilization of health care. Mayo Clin Proc 1979, 54, 708.

    Google Scholar 

  7. Holbrook, T.L., Grazier, K., Kelsey, J.L., Stauffer, R.N. The frequency of occurrence, impact and cost of selected musculoskeletal conditions in the United States. American Academy of Orthopedic Surgeons, Chicago, 1984.

    Google Scholar 

  8. Miller, C.W. Survival and ambulation following hip fracture. J Bone Joint Surg, 1978, 60A, 930.

    Google Scholar 

  9. Versluyen, M. How elderly patients with femoral fracture develop pressure sores in hospital. Br Med J 1986, 292, 1.311.

    Google Scholar 

  10. Melton, L.J., O'Fallon, W.M., Riggs, B.L. Secular trends in the incidence of hip fractures. Calcif Tissue Intern 1987, 41, 57.

    Google Scholar 

  11. Lindsay, R. (1.984): Osteoporosis and its relationship to estrogen. Contemp Obstet Gynecol 1984, 63, 201.

    Google Scholar 

  12. Cann, C.E., Genant, H.K., Kolb, F.O., Ettinger, B. Qualitative computed tomography for prediction of vertebral fracture risk. Bone 1985, 6, 1.

    Google Scholar 

  13. Krolner, B., Nielsen, S.P. (1.982): Bone mineral content of the lumbar spine in normal and osteoporotic women: cross sectional and longitudinal studies. Clin Sci 1982, 62, 329.

    Google Scholar 

  14. Meema, H.E. Menopausal and aging changes in muscle mass and bone mineral content. J Bone Joint Surg 1966, 48A, 1.138.

    Google Scholar 

  15. Geusens, P., Dequeker, J., Verstraeten, A., Nijs, J. Age, sex and menopause-related changes of vertebral and peripheral bone population study using dual and single photon abosprptiometry and radiogrammetry. J Nucl Med 1986, 27, 1.540.

    Google Scholar 

  16. Pérez Cano, R., Moruno Garcia, R., Montoya, M.J., Cabezon, J., Galán, F., Garrido, M. Bone mineral content in a Spanish population. Bone mineral measurement by photon absorptiometry. Bone mineral measurement by photon absorptiometry. J. Dequeker, P. Geusens, H.W., Wahner, Eds: Leuven University Press 1988, 254.

  17. Lindsay, R., Aitken, J.M., Anderson, J.B., Hart, D.M., MacDonald, E.B., Clark, A.C. Long-term prevention of postmenopausal osteoporosis by oestrogen. Lancet 1976, i, 1.038.

    Google Scholar 

  18. Lindsay, R., Hart, D.M., Forrest, C., Baird, C. Prevention of spinal osteoporosis in oophorectomized women. Lancet 1980, ii, 1.151.

    Google Scholar 

  19. Christiansen, C., Christiansen, M.S., Transbol, I. Bone mass in postmenopausal women after withdrawal of estrogen/gestagen replacement therapy. Lancet 1981, i, 459.

    Google Scholar 

  20. Horsman, A., James, M., Francis, R. The effect of estrogen dose on postmenopausal bone loss. N Engl J Med 1983, 309, 1.405.

    Google Scholar 

  21. Ettinger, B., Genant, H.K., Cann, C.E. Long-term estrogen therapy prevents bone loss and fracture. Ann Intern Med 1985, 102, 319.

    Google Scholar 

  22. Jick, H., Watkins, R.N., Hunter, J.R., Dinan, B.J., Madsen, S., Rothman, K.J., Walker, A.M. Replacement estrogens and endometrial cancer. N Engl J Med 1979, 300 (5), 218.

    Google Scholar 

  23. Weiss, N.S., Szekely, D.R., Dallas, R., English, M.S., Abrahan, I., Schweid, A.I. Endometrial cancer in relation to patterns of menopausal estrogen use. J Ann Med Assoc 1979, 242, 261.

    Google Scholar 

  24. Ziel, H.K., Finkle, W.K. Increased risk of endometrial carcinoma users of conjugated estrgens. N Engl J Med 1975, 293, 1.167.

    Google Scholar 

  25. Gambrell, R.D. The menopause: Benefits and risk of estrogen-progestogen replacement therapy. Fertil Steril 1982, 37, 457.

    Google Scholar 

  26. Wingo, P.A., Layde, P.M., Lee, N.C., Rubin, G., Ory, H.W. The risk of breast cancer in postmenopausal women who have used estrogen replacement therapy. J Ann Med Assoc 1987, 257, 209.

    Google Scholar 

  27. Mckay, Hart, D., Lindsay, R., Purdie, D. Vascular complications of long-term oestrogen therapy. Front Horm Res 1978, 5, 174.

    Google Scholar 

  28. Boston Collaborative Drug Durveillance Program (1.974): Surgically confirmed gall bladder disease, venous thromboembolism, and breast tumors in relation to postmenopausal estrogen therapy. N Engl J Med 1974, 290, 15.

    Google Scholar 

  29. Campbell, S., Mc Queen, J., Minardi, J., Whitehead, M.I. (1.978): The modifying effect of progestogen on the response of the postmenopausal endometrium to exogenons oestrogens. Postgrad Med J 1978, 54, 59.

    Google Scholar 

  30. Judd, H.L., Meldrum, D.R., Deftos, L.J., Henderson, B.E. (1.983): Estrogen replacement therapy: indications and complications (UCLA Conference). Ann Intern Med 1983, 98, 195.

    Google Scholar 

  31. Riggs, B.L. Practical management of the patient with osteoporosis. In: Osteoporosis. Etiology, Diagnosis and management. Eds: B.L. Riggs, L.J. Melton III. Pag. 481. Raven Press. New York.

  32. Parfitt, A.M. The cellular basis of bone remodeling. The quantum concept re-examined in light of recent advances in cell biology of bone. Calcinf. Tissue Int 1984, 365, 37.

    Google Scholar 

  33. Frost, H.M. Treatment of osteoporosis by manipulation of coheent bone cell populations. Clin Orthop 1979, 143, 227.

    Google Scholar 

  34. Frost, H.M. The ADFR concept revisited. Calcif Tissue Int 1984, 36, 349.

    Google Scholar 

  35. Kuntz, D., Marie, P., Berthel, M., Caulin, F. Treatment of postmenopausal osteoporosis with phosphate and intermittent calcitonin. Int J Clin Pharmacol Res 1986, 157, 000.

    Google Scholar 

  36. Anderson, C., Cape, RDT., Crilly, R.G., Hodsman, A.B., Wolfe, B.M.J. Preliminary observations of a form of coherence therapy for osteoporosis. Calcif Tissue Int 1984, 36, 341.

    Google Scholar 

  37. Rasmussen, H., Bordier, P., Marie, P., Auquier, L., Eisinger, J.B., Kuntz, D., Caulin, F., Argemi, B., Gueris, J., Julien, A. Effect of combined therapy with phosphate and calcitonin on bone volume in osteoporosis. Metab Bone Dis Rel Res 1980, 2, 107.

    Google Scholar 

  38. Pacifici, R., Mc Murtry, C., Vered, I., Rupich, R., Avioli, L.V. Coherence therapy does not prevent axial bone loss in osteoporotic women: A preliminary comparative study. J Clin Endocrinol Metab 1988, 66, 747.

    Google Scholar 

  39. Heaney, R.P., Recker, R.R., Saville, P.D. (1.978): Menopausal changes in bone remodelling. J Lab Clin Med 1978, 92, 964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez Cano, R., Moruno, R., Montoya, M.J. et al. ADFR therapy in the prevention of bone loss after menopause. Clin Rheumatol 8 (Suppl 2), 56–60 (1989). https://doi.org/10.1007/BF02207235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207235

Key words

Navigation