Clinical Rheumatology

, Volume 11, Issue 3, pp 346–350 | Cite as

Influence of calcitonin treatment on the osteocalcin concentration in the algodystrophy of bone

  • A. Sawicki
  • P. Szulc
  • T. Sobczyk
  • J. Goliszewski
  • P. Garnier
  • R. Labuszewski


Algodystrophy (AD) attacks all tissues in the affected region and results in the rapid demineralization of bones. Osteocalcin (OC) and alkaline phosphatase (AP) are markers of bone turnover. Calcitonin is the treatment of choice of AD. Two groups of patients were studied: Group I (n=8)-acute stage of AD (before and during the calcitonin treatment), Group II (n=5)-late chronic stage of AD. In the acute stage of AD both OC level and AP activity were increased. They were normal in the chronic state of AD. During the calcitonin treatment OC level normalized after 14 days and then increased again. During the treatment, AP activity temporarily increased and then returned to the initial level. We confirm that an increased bone turnover is observed in the acute stage of AD. Discrepancy between OC level and AP activity reflects the local metabolic disturbances. Salmon calcitonin inhibits the algodystrophic process and probably contributes to the activation of the skeletal restoration.

Key words

Algodystrophy Osteocalcin Alkaline phosphatase Calcitonin Treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doury, P. Algodystrophy. Reflex sympathetic dystrophy syndrome. Clin Rheumatol, 1987, 7, 173–80.CrossRefGoogle Scholar
  2. 2.
    Carlson, T., Jacobs, A.M. Reflex sympathetic dystrophy syndrome. J Foot Surg 1986, 25, 149–153.PubMedGoogle Scholar
  3. 3.
    Doury, P., Pattin, S., Eulry, F., Faquert, P., Granier, R., Graillard, J.F. L'algodystropiie du genou. A propos d'une série de 125 observations. Rev Rhum Mal Osteoartic 1987, 54, 655–659.PubMedGoogle Scholar
  4. 4.
    Reginster, J.Y., Gritten, C., Franchimont, P. L'olgodystrophie. Rev Méd Liège 1986, 41, 996–1003.PubMedGoogle Scholar
  5. 5.
    Renier, J.C., Basle, M., Arlet, J., Seret, P. L'os et le métabolisme phosphocalcique dans l'algodystrophie. Rev Rhum Mal Osteoartic 1983, 50, 23–31.PubMedGoogle Scholar
  6. 6.
    DeGuembecker, W., DeGuembecker, C., Duriez, R., Duriez, J. Apport de l'absorption photonique dans le diagnostic des algodystrophis décalcifiantes des pieds. Rev Rhum Mal Osteoartic 1982, 49, 887–890.Google Scholar
  7. 7.
    Krawzak, H.W., Lindecken, K.D., Beyer, H.K., Mayer, M. Quantifizierung von Mineralisationsprozessen bei posttraumatischer Algodystrophie mittels computerotomographischer Densitometrie. Z Orthop 1989, 127, 202–206.CrossRefPubMedGoogle Scholar
  8. 8.
    Sarrat, P., Acquaviva, P.C., Laforgue, P., Zakarian, H., Lopez, M., Bouscarle, B. L'algodystrophie de la tête fémorale. Apport des nouvelles méthodes d'imagerie. J Radiol 1988, 69, 495–500.PubMedGoogle Scholar
  9. 9.
    Constantinesco, A., Brunot, B., Demangeat, J.L., Foucher, G., Farcot, J.M. Apport de la scintigraphie osseuse en trois phases au diagnostic précoce de l'algodystrophie. Ann Chir Main 1986, 5, 93–104.CrossRefPubMedGoogle Scholar
  10. 10.
    Rutishauser, E., Vernet, A., Marabraud, A. L'ostéoporose posttraumatique. Etude histopathologique.Acta Chir Belg 1956 (Suppl I) 123–148.Google Scholar
  11. 11.
    Rohner, A., Contribution à l'étude histopatologique de la dystrophie de Sudeck. Ann Anat Pathol 1958, 3, 477–511.Google Scholar
  12. 12.
    Arlet, J., Ficat, P., Durroux, R., Girou de Gercourt, R. Histopathologie des lésions osseuses et cartilagineuses dans l'algodystrophie sympathique réflexe du genou. Rev Rhum Mal Osteoartic 1981, 48, 315–321.PubMedGoogle Scholar
  13. 13.
    Arlet, J., Ficat, P., Durroux, R., Theallier, J.P., Mazières, B., Bouteiller, G. Histopathologie des lésions osseuses dans 9 cas d'algodystrophie de la hanche. Rev Rheum Mal Osteoartic 1978, 45, 691–698.Google Scholar
  14. 14.
    Fournié, A., Demblans-Dechans, B., Fournié, B., Muller de la Caffinière, M.J. Algodystrophies et test à la calcitonine. Aperçus Physiopathologiques. Rev Rhum Mal Osteoartic 1982, 49, 879–882.PubMedGoogle Scholar
  15. 15.
    Garcia-Carrasco, M., Gruson, M., De Vernejoul, M.C., Denne, M.A., Miravet, L. Osteocalcin and bone morphometric parameters in adults without bone disease. Calcif Tissue Int 1988, 42, 13–17.CrossRefPubMedGoogle Scholar
  16. 16.
    Register, T.C., Wuthier, R.E. Effect of vanadate, a potent alkaline phosphatase inhibitor, on45Ca and32P uptake by a matrix vasicle-enriched fractions from chicken epiphyseal cartilage. J Biol Chem 1984, 259, 3511–3518.PubMedGoogle Scholar
  17. 17.
    Chambers, T.J., Chambers, J.C., Symonds, J., Darby, J.A. The effect of human calcitonin on the cytoplasmic spreading of rat osteoclasts. J Clin Endocrinol Metab 1986, 63, 1080–1985.CrossRefPubMedGoogle Scholar
  18. 18.
    Strettle, R.J., Bates, R.F.L., Buckley, G.A., Evidence for a direct anti-inflammatory action of calcitonin: inhibition of histamine-induced mouse pinnal oedema by porcine calcitonin. J Pharm Pharmacol 1980, 32, 192–195.CrossRefPubMedGoogle Scholar
  19. 19.
    Ceserani, R. Calcitonin and prostaglandin system. Life Sci 1979, 25, 1851–1856.CrossRefPubMedGoogle Scholar
  20. 20.
    Roth, A., Kolaric, K. Analgetic activity of calcitonin in patients with painful osteolytic metastases of breast cancer. Oncology 1986, 43, 283–287.CrossRefPubMedGoogle Scholar
  21. 21.
    Nuti, R., Vattimo, A., Martini, G., Turchetti, V., Righi, G.A. Carbocalcitonin treatment in Sudeck's atrophy. Clin Orthop Rel Res 1987, 215, 217–222.Google Scholar
  22. 22.
    Breitenfelder, J. Zur Therapie des Sudecks-Syndroms. Therapiewoche 1979, 29, 6578–6587.Google Scholar
  23. 23.
    Baylink, D.J., Taylor, A.K., Johnston, P., Leuken, S., Linkhart, S.G. Update on osteocalcin assays. Calcif Tissue Int 1991, 49 (Suppl), A4, 13.Google Scholar
  24. 24.
    Riggs, B.L., Tsai, K-S, Mann, K.G. Effects of acute increases in bone matrix degradation on circulating levels of bone Gla protein. J Bone Miner Res 1986, 1, 539–542.CrossRefPubMedGoogle Scholar
  25. 25.
    Einhorn, T.A., Vigorita, V.J., Aaron, A. Localization of Technetium-99m-methylene diphosphonate in bone using microautoradiography. J Orthop Res 1986, 4, 180–187.CrossRefPubMedGoogle Scholar
  26. 26.
    Vattimo, A., Martini, G., Pisani, M. Bone uptake of99mTc-MDP in man: its relationship with local blood flow. J Nucl Med All Sci 1982, 26, 173–179.Google Scholar
  27. 27.
    Farley, J.R., Hall, S.L., Tarbaux, N.M. Calcitonin (but not calcitonin gene-related peptide) increases mouse bone cell proliferation in a dosedependent manner, and increases mouse bone formation, alone and in combination with fluoride. Calcif Tissue Int 1989, 45, 214–221.CrossRefPubMedGoogle Scholar
  28. 28.
    Griffiths, J., Black, J. Separation and identification of alkaline phosphatase isoenzymes and isoforms in serum of healthy persons by isoelectric focusing. Clin Chem 1987, 33, 2171–2177.PubMedGoogle Scholar
  29. 29.
    Arlet, J., Ficat, P. Phlébographie transosseuse, pression intramédullaire et oxymétrie du sang osseux au cours des algodystrophies sympathiques réflexes. Rev Rhum Mal Osteoartic 1982, 49, 883–885.PubMedGoogle Scholar
  30. 30.
    Asherl, R., Blümel, G. Zum Krankheitsbild der Sudeck'schen Dystrophie. Fortschr Med 1981, 99, 712–720.Google Scholar
  31. 31.
    Bassett, C.A.L., Herrmann, I. Influence of oxygen concentration and mechanical factors on differentiation of connective tissue in vitro. Nature 1961, 160, 460–461.CrossRefGoogle Scholar
  32. 32.
    Wimalawansa, S.J. Calcitonin: molecular biology, physiology, pathophysiology and its therapeutic uses. In: Bone regulatory factors. Editor: Pecile, A., de Bernard, B. 1990, pp. 121–60.Google Scholar
  33. 33.
    Taoussanis, K. Erfahrungsberich über die Behandlung des Sudeck-Syndroms mit Calcitonin. Med Welt 1981, 32, 1375–1377.PubMedGoogle Scholar
  34. 34.
    Renier, J.C., Moreau, R., Bernat, M., Basle, M., Jallet, P., Minier, J.F., Apport des explorations isotopiques dynamiques dans l'étude des algodystrophies. Rev Rhum Mal Osteoartic 1979, 46, 235–241.PubMedGoogle Scholar
  35. 35.
    Caniggia, A., Nuti, R., Galli, M., Loré, F., Turchetti, V., Righi, G.A., Effect of a long-term treatment with 1,25-dihydroxyvitamin D3 on osteocalcin in postmenopausal osteoporosis. Calcif Tissue Int 1986, 38, 328–332.CrossRefPubMedGoogle Scholar
  36. 36.
    Pak, C.Y.C., Sakhaee, K., Gallagher, C., Parcel, C., Peterson, R., Zerwekh, J.E., Lemke, M., Britton, F., Hsu, M.-C., Adams, B. Attainment of therapeutic fluoride levels in serum without major side-effects using a slow-release preparation of sodium fluoride in postmenopausal osteoporosis. J Bone Miner Res 1986, 1, 563–571.CrossRefPubMedGoogle Scholar
  37. 37.
    Papapoulos, S.E., Frolich, M., Mudde, A.H., Harnick, H.I.J., vd Berg, H., Bijvoet, O.L.M. Serum osteocalcin in Paget's disease of bone: basal concentrations and response to bisphosphonate treatment. J Clin Endocinol Metab 1987, 65, 89–94.CrossRefGoogle Scholar
  38. 38.
    Mizunashi, K., Furukawa, Y., Miura, R., Yumita, R., Yumita, S., Sohn, H.E. Yoshinaga, K. Effects of active vitamin D3 and parathyroid hormone on the serum osteocalcin in idiopathic hypoparathyroidism and pseudohypoparathyroidism. J Clin Invest 1988, 82, 861–865.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Longstreth, P.L., Malinak, L.R. Hydroxyproline and transient osteoporosis. Ann Intern Med 1972, 76, 833.CrossRefPubMedGoogle Scholar

Copyright information

© Acta Medica Belgica 1992

Authors and Affiliations

  • A. Sawicki
    • 1
  • P. Szulc
    • 2
  • T. Sobczyk
    • 3
  • J. Goliszewski
    • 3
  • P. Garnier
    • 4
  • R. Labuszewski
    • 3
  1. 1.Mineral Metabolism and Bone Pathology Unit, Dept. Neuroendocrinology, Medical Center for Postgraduate EducationOrthopaedic HosptialWarsawPoland
  2. 2.Dept. EndocrinologyMedical Center for Postgraduate EducationWarsawPoland
  3. 3.Orthopaedic HospitalWarsawPoland
  4. 4.Fondation Recherche en HormonologieParis-FresnesFrance

Personalised recommendations