Advertisement

Archive for Rational Mechanics and Analysis

, Volume 136, Issue 3, pp 291–303 | Cite as

Global solvability of the maxwell-bloch equations from nonlinear optics

  • P. Donnat
  • J. Rauch
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism Nonlinear Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BL]
    D. M. Bishop &B. Lam, Ab initio study of third order nonlinear optical properties of helium,Phys. Rev. A,37, 464–469 (1988).Google Scholar
  2. [BC]
    P. Butcher &D. Cotter, The Elements of Nonlinear Optics, Cambridge Univ. Press, Cambridge, UK, 1990.Google Scholar
  3. [CGT]
    R. Y. Chiao, E. Garmire &C. H. Townes, Self-trapping of optical beams,Phys. Rev. Letters,13, 479–480 (1964).Google Scholar
  4. [DM]
    E. L. Dawes &J. H. Marburger, Computer studies in self-focusing,Phys. Rev.,179, 862–867 (1969).Google Scholar
  5. [DLP]
    A. P. Dyshko, V. N. Lugovoi &A. M. Prokhorov, Development of an optical waveguide in the propagation of light in nonlinear mediumSov. Phys. JETP,34, 1235–1241 (1972).Google Scholar
  6. [D]
    P. Donnat, Quelque contributions mathématiques en optique nonlinéaire, Thèse, Ecole Polytechnique, Paris, 1994.Google Scholar
  7. [DR]
    P. Donnat &J. Rauch, Dispersive nonlinear geometric optics,J. Math. Phys. to appear.Google Scholar
  8. [FF]
    M. D. Feit &J. A. Fleck, Beam non paraxiality, filament formation and beam break up in the self-focusing of optical beam,J. Opt. Soc. Am. B,5, 633–640 (1988).Google Scholar
  9. [G]
    R. T. Glassey, On the blow-up of solutions of the Cauchy problem for the nonlinear Schrödinger equation,J. Math. Physics,18, 1794–1797 (1977).Google Scholar
  10. [JMR]
    J.-L. Joly, G. Metivier &J. Rauch, Global solvability of the anharmonic oscillator model from nonlinear optics,SIAM J. Math. Anal.,27, 905–913 (1996).Google Scholar
  11. [H]
    L. Hörmander, Non-linear Hyperbolic Differential Equations, Lecture Notes, Lund University, 1987.Google Scholar
  12. [K]
    P. L. Kelley, Self-focussing of optical beams,Phys. Rev. Letters,15, 1005–1008 (1965).Google Scholar
  13. [L]
    G. G. Luther, A. C. Newell &J. V. Maloney, Normal dispersion arrests critical collapse, preprint.Google Scholar
  14. [MP]
    V. Malkin &G. Papanicolaou, On self-focusing of short laser pulses, preprint (1993).Google Scholar
  15. [M]
    J. H. Marburger, Self-focussing theory,Prog. Quant. Elect. 4, 35–110 (1975).Google Scholar
  16. [NM]
    A. Newell &J. Moloney, Nonlinear Optics, Addison-Wesley, Reading, Mass. 1992.Google Scholar
  17. [PP]
    R. Pantell &H. Puthoff, Fundamentals of Quantum Electronics, Wiley, New York, 1969.Google Scholar
  18. [Ra]
    J. Rauch, Partial Differential Equations, Springer-Verlag, New York, 1991.Google Scholar
  19. [Re]
    M. Reed, Abstract Non-Linear Wave Equations, Springer-Verlag, New York, 1975.Google Scholar
  20. [Rot1]
    J. E. Rothenberg, Pulse splitting during self-focussing in normally dispersive media.Opt. Letters,17, 583–585 (1992).Google Scholar
  21. [Rot2]
    J. E. Rothenberg, Breakdown of the slowly varying envelope approximation in the self-focussing of femtosecond pulses.Opt. Letters,17, 1340–1342 (1992).Google Scholar
  22. [Ro]
    C. Rouyer, E. Mazataud, I. Allais, A. Pierre, S. Seznec, C. Sauteret, G. Mourou &A. Migus: Generation of 50TW femtosecond pulses in a Ti: sapphire/Nd: glass chain,Opt. Letters,18, 214–216 (1993).Google Scholar
  23. [Sh]
    Y. R. Shen, The Principles of Nonlinear Optics, Wiley-Interscience, New York, 1984.Google Scholar
  24. [T]
    M. Taylor, Pseudodifferential Operators and Nonlinear Optics, Birkhäuser, Boston, 1991.Google Scholar
  25. [Tal]
    V. I. Talanov, Self-focusing of wave beams in nonlinear media,J. Exper. Theor. Phys. Lett.,2, 138–141 (1965).Google Scholar
  26. [Y]
    V. Yudovich, Nonstationary flows of an ideal incompressible fluid,Zh. Vych. Math.,3, 1032–1066 (1963).Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • P. Donnat
    • 1
    • 2
  • J. Rauch
    • 1
    • 2
  1. 1.Commisariat à l'Energie AtomiqueCentre d'Etude de Limeil ValentonVilleneuve St. Georges cedexFrance
  2. 2.Department of MathematicsUniversity of MichiganAnn Arbor

Personalised recommendations