Skip to main content
Log in

Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We have examined and dated primate divergences by applying a newly established molecular/paleontological reference, the evolutionary separation between artiodactyls and cetaceans anchored at 60 million years before present (MYBP). Owing to the morphological transformations coinciding with the transition from terrestrial to aquatic (marine) life and the large body size of the animals (which makes their fossils easier to find), this reference can be defined, paleontologically, within much narrower time limits compared to any local primate calibration marker hitherto applied for dating hominoid divergences. Application of the artiodactyl/cetacean reference (A/C-60) suggests that hominoid divergences took place much earlier than has been concluded previously. According to a homogenous-rate model of sequence evolution, the primary hominoid divergence, i.e., that between the families Hylobatidae (gibbons) and Hominidae, was dated at ≈36 MYBP. The corresponding dating for the divergence betweenPongo (orangutan) andGorilla-Pan (chimpanzee)-Homo is ≈24.5 MYBP, that forGorilla vsHomo-Pan is ≈18 MYBP, and that forHomo vsPan ≈13.5 MYBP. The split between Sumatran and Bornean orangutans was dated at ≈10.5 MYBP and that between the common and pygmy chimpanzees at ≈7 MYBP. Analyses of a single gene (cytochromeb) suggest that the divergence within the Catarrhini, i.e., between Hominoidea and Old World monkeys (Cercopithecoidea), took place >40 MYBP; that within the Anthropoidea, i.e., between Catarrhini and Platyrrhini (New World monkeys), >60 MYBP; and that between Anthropoidea and Prosimii (lemur), ≈80 MYBP. These separation times are about two times more ancient than those applied previously as references for the dating of hominoid divergences. The present findings automatically imply a much slower evolution in hominoid DNA (both mitochondrial and nuclear) than commonly recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi J (1995) Modeling of molecular evolution and maximum likelihood inference of molecular phylogeny. PhD thesis, School of Mathemathical and Physical Science, Tokyo

    Google Scholar 

  • Adachi J, Hasegawa M (1995a) Improved dating of the human-chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino acid sites. J Mol Evol 40:622–628

    Google Scholar 

  • Adachi J, Hasegawa M (1995b) MOLPHY: programs for molecular phylogenetics, version 2.3. Inst. Statistical Maths, Tokyo

    Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Andrews P (1987) Aspects of hominoid phylogeny. In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press, Cambridge, pp 23–53

    Google Scholar 

  • Andrews P, Cronin J (1982) The relationships ofSivapithecus andRamapithecus and the evolution of the orang-utan. Nature 297:541–546

    Google Scholar 

  • Andrews P, Pilbeam D (1996) The nature of the evidence. Nature 379:123–124

    Google Scholar 

  • Arnason U, Gullberg A (1993) Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J Mol Evol 37:312–322

    Google Scholar 

  • Arnason U, Gullberg A (1994) Relationship of baleen whales established by cytochromeb gene sequence comparison. Nature 367:726–728

    Google Scholar 

  • Arnason U, Gullberg A (1996) Cytochromeb nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol Biol Evol 13:407–417

    Google Scholar 

  • Arnason U, Johnsson E (1992) The complete mitochondrial sequence of the harbor seal,Phoca vitulina. J Mol Evol 34:493–505

    Google Scholar 

  • Arnason U, Gullberg A, Widegren B (1991a) The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus. J Mol Evol 33:556–568

    Google Scholar 

  • Arnason U, Spilliaert R, Palsdottir A, Arnason A (1991b) Molecular identification of hybrids between the two largest whale species, the blue whale (Balaenoptera musculus) and the fin whale (B. physalus). Hereditas 115:183–189

    Google Scholar 

  • Arnason U, Gullberg A, Johnsson E, Ledje C (1993) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal,Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37:323–330

    Google Scholar 

  • Arnason U, Bodin K, Gullberg A, Ledje C, Mouchaty S (1995) A molecular view of pinniped relationships with particular emphasis on the true seals. J Mol Evol 40:78–85

    Google Scholar 

  • Arnason U, Gullberg A, Xu X, Graur D (1996a) The “Phoca Standard”: an external molecular reference for calibrating recent evolutionary divergences. J Mol Evol 43:41–45

    Google Scholar 

  • Arnason U, Xu X, Gullberg A (1996b) Comparison between the complete mitochondrial DNA sequences ofHomo and the common chimpanzee. J Mol Evol 42:145–152

    Google Scholar 

  • Arnason U, Gullberg A, Xu X (1996c) A complete mitochondrial DNA molecule of the white-handed gibbon,Hylobates lar, and comparison among individual mitochondrial genes of all hominoid genera. Hereditas 124:185–189

    Google Scholar 

  • Ayala FJ (1995) The myth of Eve: molecular biology and human origins. Science 270:1930–1936

    Google Scholar 

  • Bailey WJ, Hayasaka K, Skinner CG, Kehoe S, Sieu LC, Slightom JL, Goodman M (1992) Reexamination of the African hominoid trichotomy with additional sequences from the primate β-globin gene cluster. Mol Phylogenet Evol 1:97–135

    Google Scholar 

  • Beard KC, Tong Y, Dawson MR, Wang J, Huang X (1996) Earliest complete dentition of an anthropoid primate from the late middle Eocene of Shanxi Province, China. Science 272:82–85

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Google Scholar 

  • Caccone A, Powell JR (1989) DNA divergence among hominoids. Evolution 43:925–942

    Google Scholar 

  • Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree base on a single gene. J Mol Evol 39:519–527

    Google Scholar 

  • Ciochon RL, Chiarelli AB (1980a) Paleobiogeographic perspectives on the origin of the Platyrrhini. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 459–493

    Google Scholar 

  • Ciochon RL, Chiarelli AB (1980b) Concluding remarks. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 459–493

    Google Scholar 

  • Collura RV, Stewart C (1995) Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378:485–489

    Google Scholar 

  • D'Erchia AM, Gissi C, Pesole G, Saccone C, Arnason U (1996) The guinea-pig is not a rodent. Nature 381:597–600

    Google Scholar 

  • Doolittle RF, Feng D-F, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Google Scholar 

  • Felsenstein J (1991) Phylogenetic inference programs, PHYLIP. University of Washington, Seattle and University Herbarium, University of California, Berkeley

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Fleagle JG (1988) Primate adaptation and evolution. Academic Press, San Diego

    Google Scholar 

  • Fleagle JG, Bown TM, Obradovitch JD, Simons EL (1986) Age of the earliest African anthropoids. Science 234:1247–1249

    Google Scholar 

  • Gingerich PD (1984) Primate evolution: evidence from the fossil record, comparative morphology, and molecular biology. Yearb Phys Anthropol 27:57–72

    Google Scholar 

  • Gingerich PD, Raza SM, Arif M, Zhou XY (1994) New whale from the Eocene of Pakistan and the origin of cetacean swimming. Nature 368:844–847

    Google Scholar 

  • Goodman M (1963a) Man's place in the phylogeny of the primates as reflected in serum proteins. In: Washburn SL (ed) Classification and human evolution. Aldine, Chicago, pp 204–234

    Google Scholar 

  • Goodman M (1963b) Serological analysis of the systematics of recent hominoids. Hum Biol 35:377–436

    Google Scholar 

  • Goodman M (1985) Rates of molecular evolution: the hominoid slowdown. Bioessays 3:9–14

    Google Scholar 

  • Goodman M (1996) Epilogue: a personal account of the origins of a new paradigm. Mol Phylogenet Evol 5:269–285

    Google Scholar 

  • Goodman M, Miyamoto MM, Czelusniak J (1987) Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. In: Patterson C (ed) Molecules and morphology in evolution: conflict or compromise? Cambridge University Press, pp 140–176

  • Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229

    Google Scholar 

  • Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532–536

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Google Scholar 

  • Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Pääbo S (1994) The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137:243–256

    Google Scholar 

  • Janke A, Gemmell NJ, Feldmaier-Fuchs G, von Haeseler A, Pääbo S (1996) The mitochondrial genome of a monotreme—the platypus (Ornithorhynchus anatinus). J Mol Evol 42:153–159

    Google Scholar 

  • Kappelman J, Kelley J, Pilbeam D, Sheikh KA, Ward S, Anwar M, Barry JC, Brown B, Hake P, Johnson NM, Raza SM, Shah SMI (1991) The earliest occurrence of Sivapithecus from the middle Miocene Chinji Formation of Pakistan. J Hum Evol 21:61–73

    Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data and the branching order in Hominoidea. J Mol Evol 29:170–179

    Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:153–160

    Google Scholar 

  • Krettek A, Gullberg A, Arnason U (1995) Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog,Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. J Mol Evol 41:952–957

    Google Scholar 

  • Lopez JV, Culver M, Cevario S, O'Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA repeat (Numt) in the nuclear genome. Genomics 33:229–246

    Google Scholar 

  • Martin RD (1986) Primates: a definition. In: Wood BA, Martin LB, Andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 1–31

    Google Scholar 

  • Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Chapman Hall, Princeton University Press, London

    Google Scholar 

  • Martin RD (1993) Primate origins: plugging the gaps. Nature 363:223–234

    Google Scholar 

  • Miyamoto MM, Koop BF, Slightom JL, Goodman M, Tennant MR (1988) Molecular systematics of higher primates: genealogical relations and classification. Proc Natl Acad Sci USA 85:7627–7631

    Google Scholar 

  • Miyamoto MM, Kraus F, Laipis PJ, Tanhauser SM, Webb SD (1993) Mitochondrial DNA phylogenies within Artiodactyla. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny, placentals. Springer Verlag, New York, pp 268–281

    Google Scholar 

  • Novacek MJ (1982) Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In: Goodman M (ed) Macromolecular sequences in systematics and evolutionary biology. Plenum Press, New York, pp 3–41

    Google Scholar 

  • Prothero DR, Schoch RM (1989) Classification of the Perissodactyla. In: Prothero DR, Schoch RM (eds) The evolution of Perissodactyla. Oxford University Press, New York, pp 530–537

    Google Scholar 

  • Ramharack R, Deeley RG (1987) Structure and evolution of primate cytochrome c oxidase subunit II gene. J Biol Chem 262:14014–14021

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sarich VM, Cronin JE (1976) Molecular systematics of the primates. In: Goodman M, Tashian RE, Tashian JH (eds) Molecular anthropology: genes and proteins in the evolutionary ascent of the primates. Plenum Press, New York, pp 141–170

    Google Scholar 

  • Sarich VM, Wilson AC (1967) Immunological time scale for human evolution. Science 158:1200–1203

    Google Scholar 

  • Sibley CG, Ahlquist JE (1987) DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. J Mol Evol 26:99–121

    Google Scholar 

  • Simpson GG (1945) The principles of classification and the classification of mammals. Bull Am Mus Nat Hist 85:1–350

    Google Scholar 

  • Spilliaert R, Vikingsson G, Arnason U, Palsdottir A, Sigurjonsson J, Arnason A (1991) Species hybridization between a female blue whale (Balaenoptera musculus) and a male fin whale (B. physalus): molecular and morphological documentation. J Hered 82:269–274

    Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    Google Scholar 

  • Thewissen JGM, Hussain ST, Arif M (1994) Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212

    Google Scholar 

  • Thorne AG, Wolpoff MH (1992) The multiregional evolution of humans. Sci Am 266:28–33

    Google Scholar 

  • Tiemei C, Quan Y, Eu W (1994) Antiquity ofHomo sapiens in China. Nature 368:55–56

    Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annual Rev Biochem 46:573–639

    Google Scholar 

  • Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genet 3:241–247

    Google Scholar 

  • Xu X, Arnason U (1996a) A complete sequence of the mitochondrial genome of the western lowland gorilla. Mol Biol Evol 13:691–698

    Google Scholar 

  • Xu X, Arnason U (1996b) The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of Orangutan. J Mol Evol 43:431–437

    Google Scholar 

  • Xu X, Janke A, Arnason U (1996a) The complete mitochondrial DNA sequence of the greater Indian rhinoceros,Rhinoceros unicornis, and the phylogenetic relationship among Carnivora, Perissodactyla and Artiodactyla (+ Cetacea). Mol Biol Evol 13:1167–1173

    Google Scholar 

  • Xu X, Gullberg A, Arnason (1996b) The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. J Mol Evol 43:438–446

    Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnason, U., Gullberg, A., Janke, A. et al. Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J Mol Evol 43, 650–661 (1996). https://doi.org/10.1007/BF02202113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02202113

Key words

Navigation