Advertisement

Journal of Molecular Evolution

, Volume 43, Issue 6, pp 563–571 | Cite as

The sequence and organization of the core histone H3 and H4 genes in the early branching amitochondriate protistTrichomonas vaginalis

  • Alexandra Marinets
  • Miklós Müller
  • Patricia J. Johnson
  • Jaroslav Kulda
  • Otto Scheiner
  • Gerhard Wiedermann
  • Michael Duchêne
Articles

Abstract

Among the unicellular protists, several of which are parasitic, some of the most divergent eukaryotic species are found. The evolutionary distances between protists are so large that even slowly evolving proteins like histones are strongly divergent. In this study we isolated cDNA and genomic histone H3 and H4 clones fromTrichomonas vaginalis. Two histone H3 and three histone H4 genes were detected on three genomic clones with one complete H3 and two complete H4 sequences. H3 and H4 genes were divergently transcribed with very short intergenic regions of only 194 bp, which containedT. vaginalis-specific as well as histone-specific putative promoter elements. Southern blot analysis showed that there may be several more histone gene pairs. The two complete histone H4 genes were different on the nucleotide level but encoded the same amino acid sequence. Comparison of the amino acid sequences of theT. vaginalis H3 and H4 histones with sequences from animals, fungi, and plants as well as other protists revealed a significant divergence not only from the sequences in multicellular organisms but especially from the sequences in other protists likeEntamoeba histolytica, Trypanosoma cruzi, andLeishmania infantum.

Key words

Histone Amitochondriate protist Trichomonas vaginalis Protein evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender K, Betschart B, Schaller J, Kämpfer U, Hecker H (1992) Sequence differences between histones of procyclicTrypanosoma brucei brucei and higher eukaryotes. Parasitology 105:97–104Google Scholar
  2. Binder M, Ortner S, Plaimauer B, Födinger M, Wiedermann G, Scheiner O, Duchêne M (1995) Sequence and organization of an unusual histone H4 gene in the human parasiteEntamoeba histolytica. Mol Biochem Parasitol 71:243–247Google Scholar
  3. Bontempi EJ, Porcel BM, Henriksson J, Carlsson L, Rydaker M, Segura EL, Ruiz AM, Petterson U (1994) Genes for histone H3 inTrypanosoma cruzi. Mol Biochem Parasitol 66:147–151Google Scholar
  4. Chaubet N, Clement B, Gigot C (1992) Genes encoding a histone H3.3-like variant inArabidopsis contain intervening sequences. J Mol Biol 225:569–574Google Scholar
  5. Clerc RG, Bucher P, Strub K, Birnstiel ML (1983) Transcription of a clonedXenopus laevis H4 histone gene in the homologous frog oocyte system depends on an evolutionary conserved sequence motif in the −50 region. Nucleic Acids Res 11:8641–8657Google Scholar
  6. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic culture. J Parasitol 43:488–490Google Scholar
  7. Födinger M, Ortner S, Plaimauer B, Wiedermann G, Scheiner O, Duchêne M (1993) PathogenicEntamoeba histolytica: cDNA cloning of a histone H3 with a divergent primary structure. Mol Biochem Parasitol 59:315–322Google Scholar
  8. Gunderson J, Hinkle G, Leipe D, Morrison HG, Stickel SK, Odelson DA, Breznak JA, Nerad TA, Müller M, Sogin ML (1995) Phylogeny of trichomonads inferred from small-subunit rRNA sequences. J Eukar Microbiol 42:411–415Google Scholar
  9. Hecker H (1993) Man and sea urchin—more closely related than African and American trypanosomes. Parasitol Today 9:57Google Scholar
  10. Hecker H, Betschart B, Burri M, Schlimme W (1995) Functional morphology of trypanosome chromatin. Parasitol Today 11:79–83Google Scholar
  11. Katiyar SK, Visvesvara GS, Edlind TD (1995) Comparison of ribosomal RNA sequences from amitochondrial protozoa: implications for processing, mRNA binding and paromomycin susceptibility. Gene 152:27–33Google Scholar
  12. McEntee CM, Hudson AP (1989) Preparation of RNA from unspheroplasted yeast cells (Saccharomyces cerevisiae). Anal Biochem 176:303–306Google Scholar
  13. Müller K, Schmitt R (1988) Histone genes ofVolvox carteri: DNA sequence and organization of two H3-H4 gene loci. Nucleic Acids Res 16:4121–4136Google Scholar
  14. Müller M (1988) Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42:465–488Google Scholar
  15. Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60:827–861Google Scholar
  16. Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21:5264–5272Google Scholar
  17. Quon DVK, Delgadillo MG, Khachi A, Smale ST, Johnson PJ (1994) Similarity between a ubiquitous promoter element in an ancient eukaryote and mammalian initiator elements. Proc Natl Acad Sci USA 91:4579–4583Google Scholar
  18. Ramsey-Ewing A, van Wijnen AJ, Stein GS, Stein JL (1994) Delineation of a human histone H4 cell cycle elementin vivo: the master switch for H4 gene transcription. Proc Natl Acad Sci USA 91:4475–4479Google Scholar
  19. Rein MF, Müller M (1989)Trichomonas vaginalis and trichomoniasis. In: Holmes KK, Mardh P-A, Sparling PF, Wiesner PJ (eds) Sexually transmitted diseases. McGraw-Hill, New York, pp 481–492Google Scholar
  20. Riley DE, Krieger JN (1992) Rapid and practical DNA isolation fromTrichomonas vaginalis and other nuclease-rich protozoa. Mol Biochem Parasitol 51:161–164Google Scholar
  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  22. Sanchez LB, Enea V, Eichinger D (1994) Increased levels of polyadenylated histone H2B mRNA accumulate duringEntamoeba invadens cyst formation. Mol Biochem Parasitol 67:137–146Google Scholar
  23. Sierra F, Stein G, Stein J (1983) Structure andin vitro transcription of a human H4 histone gene. Nucleic Acids Res 11:7069–7086Google Scholar
  24. Short JM, Fernandez JM, Sorge JA, Huse WD (1988) λ ZAP: a bacteriophage λ expression vector within vivo excision properties. Nucleic Acids Res 16:7583–7600Google Scholar
  25. Smith MM, Andrésson OS (1983) DNA sequences of yeast H3 and H4 histone genes from two non-allelic gene sets encode identical H3 and H4 proteins. J Mol Biol 169:663–690Google Scholar
  26. Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463Google Scholar
  27. Soto M, Requena JM, Morales G, Alonso C (1994) TheLeishmania infantum histone H3 possesses an extremely divergent N-terminal domain. Biochim Biophys Acta 1219:533–535Google Scholar
  28. Stein GS, Stein JL, van Wijnen AJ, Lian JB (1992) Regulation of histone gene expression. Curr Opin Cell Biol 4:166–173Google Scholar
  29. Thatcher TH, Gorovsky MA (1994) Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res 22:174–179Google Scholar
  30. Thompson JS, Ling X, Grunstein M (1994) Histone H3 N terminus is required for telomeric and silent mating type locus repression in yeast. Nature 369:245–247Google Scholar
  31. van Holde KE (1989) Chromatin. Springer, New York, NYGoogle Scholar
  32. Viscogliosi E, Philippe H, Baroin A, Perasso R, Brugerolle G (1993) Phylogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphologic data. J Eukar Microbiol 40:411–421Google Scholar
  33. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to ΦX 174 DNA: the effect of a single base pair mismatch. Nucleic Acids Res 6:3543–3557Google Scholar
  34. Wells D, Kedes L (1985) Structure of a human histone cDNA: evidence that basally expressed histone genes have intervening sequences and encode polyadenylated mRNAs. Proc Natl Acad Sci USA 82:2834–2838Google Scholar
  35. Wells D, McBride C (1989) A comprehensive compilation and alignment of histones and histone genes. Nucleic Acids Res 17:r311–r346Google Scholar
  36. Wolffe AP (1994) Transcription: in tune with the histones. Cell 77:13–16Google Scholar
  37. Woudt LP, Pasink A, Kempers-Veenstra AE, Jansen AEM, Mager WH, Planta RJ (1983) The genes coding for histone H3 and H4 inNeurospora crassa are unique and contain intervening sequences. Nucleic Acids Res 11:5347–5360Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Alexandra Marinets
    • 5
    • 1
  • Miklós Müller
    • 2
  • Patricia J. Johnson
    • 3
  • Jaroslav Kulda
    • 4
  • Otto Scheiner
    • 1
  • Gerhard Wiedermann
    • 5
  • Michael Duchêne
    • 5
    • 1
  1. 1.Institute of General and Experimental PathologyUniversity of Vienna, AKHViennaAustria
  2. 2.Rockefeller UniversityNew YorkUSA
  3. 3.Department of Microbiology and Immunology and Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of ParasitologyCharles UniversityPragueCzech Republic
  5. 5.Institute for Specific Prophylaxis and Tropical MedicineUniversity of ViennaViennaAustria

Personalised recommendations