Journal of Statistical Physics

, Volume 85, Issue 5–6, pp 745–761 | Cite as

On the flux phase conjecture at half-filling: An improved proof

  • Nicolas Macris
  • Bruno Nachtergaele


We present a simplification of Lieb's proof of the flux phase conjecture for interacting fermion systems—such as the Hubbard model—at half-filling on a general class of graphs. The main ingredient is a procedure which transforms a class of fermionic Hamiltonians into reflection-positive form. The method can also be applied to other problems, which we briefly illustrate with two examples concerning thet−V model and an extended Falicov-Kimball model.

Key Words

Hubbard model flux phase reflection positivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Lieb, The flux phase of the half-filled band,Phys. Rev. Lett. 73:2158 (1994).Google Scholar
  2. 2.
    P. B. Wiegman, Towards a gauge theory of strongly correlated electronic systems,Physica 153C:103 (1988).Google Scholar
  3. 3.
    E. Fradkin,Field Theories of Condensed Matter Systems (Addison-Wesley, Reading Massachusetts, 1991).Google Scholar
  4. 4.
    E. H. Lieb, The flux phase problem on planar lattices,Helv. Phys. Acta 65:247 (1992).Google Scholar
  5. 5.
    E. H. Lieb, and M. Loss, Fluxes, Laplacians and Kasteleyn's theorem,Duke Math. J. 71:337 (1993).Google Scholar
  6. 6.
    F. J. Dyson, E. H. Lieb, and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions,J. Stat. Phys. 18:335 (1978).Google Scholar
  7. 7.
    E. H. Lieb and B. Nachtergaele, Stability of the Peierls instability for ring shaped molecules,Phys. Rev. B 51:4777 (1995).Google Scholar
  8. 8.
    J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. I. General theory and long range lattice models,Common. Math. Phys. 62:1 (1978).Google Scholar
  9. 9.
    J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. II. Lattice systems with short-ranged and Coulomb interactions,J. Stat. Phys. 22:297 (1980).Google Scholar
  10. 10.
    E. H. Lieb, M. Loss, and R. J. McCann, Uniform density theorem for the Hubbard model,J. Math. Phys. 34:891 (1993).Google Scholar
  11. 11.
    C. Albanese, and N. Datta, Quantum criticality, Mott transition and the sign problem for a model of lattice fermions,Commun. Math. Phys. 167:571 (1995).Google Scholar
  12. 12.
    N. Datta, R. Fernandez, and J. Fröhlich, Low temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitelymany ground states, preprint (1995), archived as mp-arc #95-228.Google Scholar
  13. 13.
    N. Macris and P. Lemberger, Long range order in a simple model of interacting fermions,Lett. Math. Phys. 28:491 (1993).Google Scholar
  14. 14.
    T. Kennedy, and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order,Physica 138A:320 (1986).Google Scholar
  15. 15.
    P. Alexandroff,Elementary Concepts of Topology (Dover, New York, 1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Nicolas Macris
    • 1
  • Bruno Nachtergaele
    • 2
  1. 1.Institut de Physique ThéoriqueEcole Polytechnique Féderale de LausanneLausanneSwitzerland
  2. 2.Department of PhysicsPrinceton UniversityPrinceton

Personalised recommendations