Advertisement

Siberian Mathematical Journal

, Volume 9, Issue 4, pp 641–652 | Cite as

Series in the Haar system and functions of the class H ω(δ) 1

  • M. B. Petrovskaya
Article
  • 18 Downloads

Keywords

Haar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. L. Ul'yanov, “On series in the Haar system,” Mat. Sb.,63, No. 3, 356–391 (1964).Google Scholar
  2. 2.
    S. Kaczmarz and H. Steinhaus, Theory of Orthogonal Series [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  3. 3.
    J. Schauder, “Eine Eigenschaft der Haarschen Orthogonalsystems,” Math. Z.,28, 317–320 (1928).Google Scholar
  4. 4.
    S. B. Stechkin, “On the absolute convergence of Fourier series,” Izv. Akad. Nauk SSSR, Ser. Mat.,17, 87–98 (1953).Google Scholar
  5. 5.
    N. K. Bari, Trigonometric Series [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  6. 6.
    A. I. Shmukler, “On uniformly convergent Fourier series,” Sibirsk. Matem. Zh.,6, No. 3, 669–685 (1965).Google Scholar
  7. 7.
    A. V. Efimov, “Linear methods of approximating continuous periodic functions,” Mat. Sb.,54, No. 1, 51–90 (1961).Google Scholar
  8. 8.
    S. B. Stechkin, “On the best approximation of conjugate functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat.,20, No. 2, 197–206 (1956).Google Scholar
  9. 9.
    P. L. Ul'yanov, “On the absolute and uniform convergence of Fourier series,” Mat. Sb.,72, 193–225 (1967).Google Scholar

Copyright information

© Consultants Bureau 1968

Authors and Affiliations

  • M. B. Petrovskaya

There are no affiliations available

Personalised recommendations