Skip to main content
Log in

Model of interaction at chemical synapses

  • Published:
Neurophysiology Aims and scope

Abstract

A simple, quasi-static model for convergence between afferent flows of influences at the neuronal membrane is presented. Interaction between afferent flows reaching chemical synapses of different types is examined. It was found that the pattern of this interaction diverges from algebraic summation of separate effects. The mechanism underlying action between internal negative feedbacks constitutes the basis for this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. A. E. Valeev, S. V. Vrublevskii, and N. I. Chernevskaya, “GABA-activated neuronal conductance in the mammalian cerebellum,” Neirofiziologiya,18, No. 6, 836–839 (1986).

    Google Scholar 

  2. G. A. Vartanyan and N. N. Vasilevskii, “Measurement of synaptic processes and neuronal transmitter function,” in: Synaptic Processes [in Russian], Nauk. Dumka, Kiev (1968), 183–199.

    Google Scholar 

  3. N. I. Kalinina, G. G. Kurchavyu, and B. T. Ryabov, “Reversal potential of monosynaptic EPSP in frog motoneurons,” Neirofiziologiya,18, No. 4, 534–542 (1986).

    Google Scholar 

  4. E. A. Kiyatkin and M. Kol'dits, “Functional reorganization of chemically sensitive central neurons,” Usp. Fiziol. Nauk.,17, No. 3, 108–127 (1986).

    Google Scholar 

  5. P. G. Kostyuk, “The Neuron” in: Human and Animal Physiology [in Russian], Nauka, Moscow (1972), Vol. 10, Vol. 10, pp. 5–39.

    Google Scholar 

  6. S. Kuffler and J. Nichols, From the Neuron to the Brain [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  7. E. Kandel Cellular Bases of Behavior [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  8. A. M. Polyakov, “Information reception in some types of neurons,” Fiziol. Zh. SSSR,69, No. 1, 15–18 (1983).

    Google Scholar 

  9. A. M. Polyakov and V. V. Ushakov, “Effects of parameters of after-hyperpolarization in neuronal spike activity,” Fiziol. Zh. SSSR,68, No. 10, 1451–1453 (1982).

    Google Scholar 

  10. V. I. Skok and V. L. Savich, “Neuronal properties and synaptic transmission in the sympathetic ganglion,” in: Synaptic Processes [in Russian], Nauk. Dumka, Kiev (1968), pp. 109–120.

    Google Scholar 

  11. A. I. Shapovalov, Cellular Mechanisms of Synaptic Transmission, Meditsina, Moscow (1966).

    Google Scholar 

  12. A. I. Shapovalov, “Synaptic mechanisms of suprasegmental control of motoneurons of the spinal cord,” in: Mechanisms of Descending Control over Spinal Cord Activity [in Russian], Nauka, Leningrad (1971), pp. 59–69.

    Google Scholar 

  13. J. Eccles, Physiology of Nerve Cells [Russian translation], Inostr. Lit., Moscow (1959).

    Google Scholar 

  14. J. A. Boulant, “Hypothalamic mechanisms of thermoregulation,” Fed. Proc.,40, No. 14, 2843–2850 (1981).

    Google Scholar 

  15. A. S. Finkel and S. J. Redman, “The synaptic current evoked in cat spinal motoneurones by impulses in single group Ia axons,” J. Physiol.,342, 615–632 (1983).

    Google Scholar 

  16. D. Gardner and C. F. Stevens, “Rate-limiting step of inhibitory post-synaptic current decay in Aplysia buccal ganglia,” J. Physiol.,304, 145–164 (1980).

    Google Scholar 

  17. H. M. Gerchenfeld and D. Paupardin-Tritsch, “Ionic mechanisms and receptor properties underlying the responses of molluscan neurone to 5-hydroxytryptamine,” J. Physiol.,243, No. 2, 427–456 (1974).

    Google Scholar 

  18. K. Hattori, N. Akaike, Y. Oomura, and Sh. Kuraoka, “Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurones,” Am. J. Physiol.,246, No. 3, C259-C265 (1984).

    Google Scholar 

  19. J. S. Kehoe, “Analysis of a “resting” potassium permeability that can be synaptically reduced,” J. Physiol.,244, No. 1, 23P-24P (1975).

    Google Scholar 

  20. J. Votava, “Slow synaptic excitation in symapthetic ganglion cells: evidence for synaptic inactivation of potassium conductance,” Science,170, No. 3959, 755–758 (1970).

    Google Scholar 

  21. F. F. Weight and A. Padjen, “Slow synaptic inhibition: evidence for synaptic inactivation of sodium conductance in sympathetic ganglion cells,” Brain Res.,55, No. 1, 219–224 (1973).

    Google Scholar 

Download references

Authors

Additional information

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 503–509, July–August, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, A.M. Model of interaction at chemical synapses. Neurophysiology 20, 373–378 (1988). https://doi.org/10.1007/BF02198446

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198446

Keywords

Navigation