Skip to main content
Log in

Stieltjes polynomials and Gauss-Kronrod quadrature formulae for measures induced by Chebyshev polynomials

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Given a fixedn≥1, and a (monic) orthogonal polynomial π n (·)=π n (·;) relative to a positive measuredσ on the interval [a, b], one can define the nonnegative measure\(d\hat \sigma _n (t) = [\pi _n (t;d\sigma )]^2 d\sigma (t)\), to which correspond the (monic) orthogonal polynomials\(\hat \pi _{m,n} ( \cdot ) = \pi _m ( \cdot ;d\hat \sigma _n ),m = 0,1,2,...\). The coefficients in the three-term recurrence relation for\(\hat \pi _{m,n} \), whendσ is a Chebyshev measure of any of the four kinds, were obtained analytically in closed form by Gautschi and Li. Here, we give explicit formulae for the Stieltjes polynomials\(\hat \pi _{n + 1,n}^ * ( \cdot ) = \pi _{n + 1}^ * ( \cdot ;d\hat \sigma _n )\) whendσ is any of the four Chebyshev measures. In addition, we show that the corresponding Gauss-Kronrod quadrature formulae for each of these\(d\hat \sigma _n \), based on the zeros of\(\hat \pi _{n,n} \) and\(\hat \pi _{n + 1,n}^ * \), have all the desirable properties of the interlacing of nodes, their inclusion in [−1, 1], and the positivity of all quadrature weights. Exceptions occur only for the Chebyshev measuredσ of the third or fourth kind andn even, in which case the inclusion property fails. The precise degree of exactness for each of these formulae is also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baillaud and H. Bourget,Correspondance d'Hermite et de Stieltjes I, II (Gauthier-Villars, Paris, 1905).

    Google Scholar 

  2. P. Barrucand, Intégration numérique, abscisse de Kronrod-Patterson et polynômes de Szegö, C. R. Acad. Sci. Paris 270 (1970) 336–338.

    Google Scholar 

  3. A. Bellen, Alcuni problemi aperti sulla convergenza in media dell'interpolazione Lagrangiana estesa, Rend. Istit. Mat. Univ. Trieste 20 (1988), Fasc. suppl., 1–9.

    Google Scholar 

  4. F. Caliò, W. Gautschi and E. Marchetti, On computing Gauss-Kronrod quadrature formulae, Math. Comp. 47 (1986), 639–650.

    Google Scholar 

  5. W. Gautschi, Gauss-Kronrod quadrature — a survey, inNumerical Methods and Approximation Theory III, ed. G.V. Milovanović (Faculty of Electronic Engineering, Univ. Niš, Niš, 1988) pp. 39–66.

    Google Scholar 

  6. W. Gautschi, Orthogonality — conventional and unconventional — in numerical analysis, inComputation and Control, eds. K. Bowers and J. Lund (Birkhäuser, Boston, 1989) pp. 63–95.

    Google Scholar 

  7. W. Gautschi and S. Li, A set of orthogonal polynomials induced by a given orthogonal polynomial, Aequationes. Math. 46 (1993) 174–198.

    Google Scholar 

  8. W. Gautschi and S.E. Notaris, An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions, Math. Comp. 51 (1988) 231–248.

    Google Scholar 

  9. W. Gautschi and S.E. Notaris, Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szegö type, J. Comput. Appl. Math. 25 (1989) 199–224; erratum in: J. Comput. Appl. Math. 27 (1989) 429.

    Google Scholar 

  10. I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series, and Products (Academic Press, San Diego, 1980).

    Google Scholar 

  11. A.S. Kronrod, Integration with control of accuracy, Dokl. Akad. Nauk SSSR 154 (1964) 283–286 (in Russian).

    Google Scholar 

  12. A.S. Kronrod,Nodes and Weights for Quadrature Formulae. Sixteen-place Tables (in Russian) (Izdat “Nauka”, Moscow, 1964). [English transl.: Consultants Bureau, New York, 1965.]

    Google Scholar 

  13. G. Monegato, A note on extended Gaussian quadrature rules, Math. Comp. 30 (1976) 812–817.

    Google Scholar 

  14. G. Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982) 137–158.

    Google Scholar 

  15. I.P. Mysovskih, A special case of quadrature formulae containing preassigned nodes, Vesci Akad. Navuk BSSR Ser. Fiz.-Tehn. Navuk 4 (1964) 125–127 (in Russian).

    Google Scholar 

  16. S.E. Notaris, An overview of results on the existence or nonexistence and the error term of Gauss-Kronrod quadrature formulae, in:Approximation and Computation, ed. R.V.M. Zahar, Int. Ser. Numer. Math. vol. 119 (Birkhäuser, Basel/Boston/Berlin, 1994) pp. 485–496.

    Google Scholar 

  17. G. Szegö, Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören, Math. Ann. 110 (1935) 501–513;Collected Papers, ed. R. Askey, vol. 2, pp. 545–557.

    Google Scholar 

  18. G. Szegö,Orthogonal Polynomials, Colloquium Publ. vol. 23, 4th ed. (American Mathematical Society, Providence, RI, 1975).

    Google Scholar 

  19. W. Van Assche and A.P. Magnus, Sieved orthogonal polynomials and discrete measures with jumps dense in an interval, Proc. Amer. Math. Soc. 106, (1989) 163–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notaris, S.E. Stieltjes polynomials and Gauss-Kronrod quadrature formulae for measures induced by Chebyshev polynomials. Numer Algor 10, 167–186 (1995). https://doi.org/10.1007/BF02198302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198302

Keywords

Subject classification

Navigation