Skip to main content
Log in

Magnetic and dynamic properties of the Hubbard model in infinite dimensions

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

An essentially exact solution of the infinite dimensional Hubbard model is made possible by using a self-consistent mapping of the Hubbard model in this limit to an effective single impurity Anderson model. Solving the latter with quantum Monte Carlo procedures enables us to obtain exact results for the one and two-particle properties of the infinite dimensional Hubbard model. In particular, we find antiferromagnetism and a pseudogap in the single-particle density of states for sufficiently large values of the intrasite Coulomb interaction at half filling. Both the antiferromagnetic phase and the insulating phase above the Néel temperature are found to be quickly suppressed on doping. The latter is replaced by a heavy electron metal with a quasiparticle mass strongly dependent on doping as soon asn<1. At half filling the antiferromagnetic phase boundary agrees surprisingly well in shape and order of magnitude with results for the three dimensional Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hubbard, J.: Proc. R. Soc. London Ser. A276, 238 (1963); Gutzwiller, M.C.: Phys. Rev. Lett.10, 159 (1063); Kanamori, J.: Prog. Theor. Phys.30, 257 (1963)

    Google Scholar 

  2. Proceedings of the International Conference on “Itinerant-Electron Magnetism”. Physica B+C91 (1977); for a review about the theory of the Hubbard model see also Vollhardt, D.: Rev. Mod. Phys.56, 99 (1984)

    Google Scholar 

  3. Lieb, E.H., Wu, F.Y.: Phys. Rev. Lett.20, 1445 (1968); Frahm, H., Korepin, V.E.: Phys. Rev. B42, 10533 (1990); Kawakami, N., Yang, S.-K.: Phys. Rev. Lett.65, 2309 (1990)

    Google Scholar 

  4. Anderson, P.W.: Phys. Rev. Lett.64, 1839 (1999);65, 2306 (1990)

    Google Scholar 

  5. Schulz, H.J.: Proceedings of the Adriatico Research Conference on Strongly Correlated Electron Systems II, Baskaran, G., Ruckenstein, A.E., Tosatti, E., Yu Lu (eds.). Singapore: World Scientific 1991

    Google Scholar 

  6. Anderson, P.W.: Phys. Rev. Lett.67, 3844 (1991)

    Google Scholar 

  7. Metzner, W., Vollhardt, D.: Phys. Rev. Lett.62, 324 (1989)

    Google Scholar 

  8. Müller-Hartmann, E.: Z. Phys. B — Condensed Matter74, 507 (1989)

    Google Scholar 

  9. van Dongen, P.G.J., Vollhardt, D.: Phys. Rev. Lett.65, 1663 (1990)

    Google Scholar 

  10. Jarrell, M.: Phys. Rev. Lett.69, 168 (1992); see also the subsequent work of Rosenberg, Zhang, Kotliar: Preprint 1992 and Georges, Krauth: Preprint 1992

    Google Scholar 

  11. Schweitzer, H., Czycholl, G.: Z. Phys. B — Condensed Matter77, 327 (1990)

    Google Scholar 

  12. Zlatić, V., Horvatić, B.: Solid State Commun.75, 263 (1990)

    Google Scholar 

  13. Menge, B., Müller-Hartmann, E.: Z. Phys. B — Condensed Matter82, 237 (1992)

    Google Scholar 

  14. Pruschke, Th.: Z. Phys. B — Condensed Matter81, 319 (1990)

    Google Scholar 

  15. Zlatić, V., Horvatić, B.: Phys. Rev. B28, 6904 (1983); Yamada, K., Yosida, K.: In: Theory of heavy fermions and valence fluctuations. Springer Series in Solid-State Sciences. Vol. 62, Kasuya, T., Saso, T. (eds.). Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  16. Brandt, U., Mielsch, Ch.: Z. Phys. B — Condensed Matter B75, 365 (1989);79, 295 (1990)

    Google Scholar 

  17. Janiŝ, V., Vollhardt, D.: Int. J. Mod. Phys. B (submitted for publication)

  18. The undressed Green's function occurring in the perturbation expansion of the Anderson model is the local component of the solution of the corresponding resonant level model, i.e. whereU=0. This has the general form\((G_1 (z))^{ - 1} = z - \varepsilon _1 + \Delta (z)\)

  19. Hirsch, J.E., Fye, R.M.: Phys. Rev. Lett.56, 2521 (1986)

    Google Scholar 

  20. A similar self-consistent QMC procedure was used to treat magnetic impurities in a superconducting host. Jarrell, M., Sivia, D.S., Patton, B.: Phys. Rev. B42, 4804 (xx)

  21. Pruschke, Th., Grewe, N.: Z. Phys. B — Condensed Matter74, 439 (1989)

    Google Scholar 

  22. Pruschke, Th., Cox, D.L., Jarrell, M.: (to be published)

  23. Langer, W., Plischke, M., Mattis, D.: Phys. Rev. Lett.23, 1448 (1969)

    Google Scholar 

  24. van Dongen, P.G.J.: Phys. Rev. Lett.67, 757 (1991)

    Google Scholar 

  25. Scalettar, R.T., Scalapino, D.J., Sugar, R.L., Toussaint, D.: Phys. Rev. B39, 4711 (1989)

    Google Scholar 

  26. Actually, from the mean-field like nature of the solution ind=∞ one would expect thed=3 data rather to be smaller. This should hold, however, only if we calculated our results with a free DOS as it occurs in a three dimensional system instead of the Gaussian (2) used here

  27. Fazekas, P., Menge, B., Müller-Hartmann, E.: Z. Phys. B —Condensed Matter78, 69 (1990)

    Google Scholar 

  28. Zhang, S.: Phys. Rev. B42, 1012 (1990)

    Google Scholar 

  29. Gubernatis, J.E., et al.: Phys. Rev. B44, 6011 (1991)

    Google Scholar 

  30. Bryan, R.K.: Eur. Biophys. J.18, 165 (1990)

    Google Scholar 

  31. Silver, R.N., et al.: Phys. Rev. B41, 2380 (1989)

    Google Scholar 

  32. Bickers, N.E., Cox, D.L., Wilkins, J.W.: Phys. Rev. B36, 2036 (1987)

    Google Scholar 

  33. Georges, A., Kotliar, G.: Phys. Rev. B45, 6479 (1992)

    Google Scholar 

  34. Krauth, W.: Private communication, see also [33]

  35. Kirshna-Murthy, H.R., Wilkins, J.W., Wilson, K.G.: Phys. Rev.B21, 1003 (1979)

    Google Scholar 

  36. Müller-Hartmann, E.: Z. Phys. B — Condensed Matter76, 216 (1989)

    Google Scholar 

  37. Serene, J.W., Hess, D.W.: Phys. Rev. B44, 3391 (1991)

    Google Scholar 

  38. Varma, C.M., Littlewood, P.B., Schmitt-Rink, S., Abrahams, E., Ruckenstein, A.E.: Phys. Rev. Lett.63, 1996 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarrell, M., Pruschke, T. Magnetic and dynamic properties of the Hubbard model in infinite dimensions. Z. Physik B - Condensed Matter 90, 187–194 (1993). https://doi.org/10.1007/BF02198153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198153

Keywords

Navigation