Soviet journal of physical oceanography

, Volume 2, Issue 1, pp 29–43 | Cite as

A stochastic model of the atmospheric precipitation in the coastal zone of the Tropical Atlantic

  • G. S. Dvoryaninov
  • A. V. Prusov
  • M. V. Shokurov
Analysis of Observations and Methods of Calculating Oceanic Hydrophysical Fields


A stochastic prognostic model of the atmospheric precipitation in the tropical area of the Atlantic Ocean is developed on the basis of a large data array. The data represent a series of monthly precipitation rates for 31 towns in the Republic of Guinea covering a period of 35–64 years as well as satellite data on the meridional displacement of the Intertropical Convergence Zone during 11 years. The model takes into account major regularities of the tropical precipitation: their impulsive periodic regime, trends, and the modulation of the stochastic component by the determined variability.


Precipitation Stochastic Model Atlantic Ocean Coastal Zone Satellite Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    TROPEX-72. Leningrad: Gidrometeoizdat (1974), 685 p.Google Scholar
  2. 2.
    TROPEX-74. Leningrad: Gidrometeoizdat (1976), 736 p.Google Scholar
  3. 3.
    Fal'kovich, A. I.Dynamics and energetics of the Intertropical Convergence Zone. Leningrad: Gidrometeoizdat (1980), 246 p.Google Scholar
  4. 4.
    Dobryshman, E. M.Dynamics of the Equatorial Atmosphere. Leningrad: Gidrometeoizdat (1980), 288 p.Google Scholar
  5. 5.
    Kashyap, R. L. and Rao, A. R.Development of Dynamic Stochastic Models from Experimental Data. Moscow: Nauka (1983), 384 p.Google Scholar
  6. 6.
    Citeau, J., Cammas, J. P. and Geuriou, Y. Position de la zone intertropicale de convergence à 28o ouest et temperature de surface dans le Golfe de Guinée.Veille Climatique Sattelitaire Bull. (1984) No. 3, 2–7.Google Scholar
  7. 7.
    Dvoryaninov, G. S., Prusov, A. V. and Shokurov, M. V. Relation between the temporal variability of the ocean temperature and the meridional wandering of the Intertropical Convergence Zone. In:Study of the Earth from Space (1987), Vol. 5, pp. 18–23.Google Scholar
  8. 8.
    Dvoryaninov, G. S., Kaba, M. L. and Timofeev, N. A. Tropical Atlantic. The Guinean region. P. 1.Atmospheric Processes. Interaction between the ocean and atmosphere. Kiev: Naukova Dumka (1988), 126 p.Google Scholar
  9. 9.
    Mandelbrot, B. B. and Wallis, J. R. Some long-run properties of geophysical records.Water Resource Res. (1969)5, 321–340.Google Scholar
  10. 10.
    Rao, R. A. and Kashyap, R. L. Stochastic-models of river flows.IEEE. Trans. Autom. Control (1974)19, 874–881.Google Scholar
  11. 11.
    Kashyap, R. L. Estimation of parameters in a partially whitened representation of a stochastic process.IEEE Trans. Autom. Control. (1974)19, 13–21.Google Scholar
  12. 12.
    Aivazyan, S. A., Enyukov I. S. and Meshalkin, L. D. Applied statistics.Fundamentals of Modelling and Primary Data Processing. Moscow: Finances and Statistics (1983), 472 p.Google Scholar
  13. 13.
    Reference Book on Special Functions, Diagrams and Tables. Moscow: Nauka (1979), 832 p.Google Scholar
  14. 14.
    Hannan, E.Multivariate Times Series. Moscow: Mir (1974).Google Scholar
  15. 15.
    Hannan, E. J. and Kavalieris, L. Multivariate linear time series models.Adv. Appl. Prob. (1984)16, 492–561.Google Scholar

Copyright information

© VSP 1991

Authors and Affiliations

  • G. S. Dvoryaninov
  • A. V. Prusov
  • M. V. Shokurov

There are no affiliations available

Personalised recommendations