Advertisement

Behavior Genetics

, Volume 25, Issue 4, pp 371–384 | Cite as

Genetic analysis of the relationships between behavioral and neuroendocrine traits in roman high and low avoidance rat lines

  • Nathalie Castanon
  • Fernando Perez-Diaz
  • Pierre Mormède
Article

Abstract

In order to determine whether the coselection observed between the selection trait (active avoidance behavior) of the Roman High Avoidance (RHA) and Roman Low Avoidance (RLA) rat lines and their neuroendocrine characteristics were genetically determined, we analyzed, in nonsegregating (RHA, RLA, and F1) and segregating (F2 and the two backcrosses) crosses, the inheritance pattern and the phenotypic correlations among behavioral (shuttle-box behavior), physiological (body, adrenal, and thymus weights), and neuroendocrine (corticosterone and prolactin reactivity, catecholamine enzyme activities) variables. Physiological characteristics and enzyme activities have acrucial role in sex dissociation. Avoidance behavior and prolactin reactivity to novel environment remained associated in segregating crosses despite gene rearrangement. They represented the most important variables to differentiate the Roman lines, perhaps sharing a common regulatory mechanism under genetic control.

Key Words

Roman rat lines adrenal hormones prolactin avoidance behavior tyrosine hydroxylase and phenylethanolamineN-methyl transferase activities segregating crosses multivariate analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bignami, G. (1965). Selection for high rates and low rates of avoidance conditioning in the rat.Anim. Behav. 13:221–227.Google Scholar
  2. Bohus, B., De Kloet, E., and Veldhuis, H. D. (1982). Adrenal steroids and behavioral adaptation: Relationships to brain corticoid receptors. In Ganten, R., and Pfaff, D. (eds.),Progress in Neuroendocrinology, Vol. 2, Springer-Verlag, Berlin, pp. 107–148.Google Scholar
  3. Broadhurst, P. L. (1975). The Maudsley Reactive and Non Reactive strains of rats. A survey.Behav. Genet. 5:99–319.Google Scholar
  4. Brush, F. R. (1991). Genetic determinants of individual differences in avoidance learning: behavioral and endocrine characteristics.Experientia 47:1039–1050.Google Scholar
  5. Brush, F. R., Froehlich, J. C., and Baron, S. (1979). Genetic selection for avoidance behavior in the rat.Behav. Genet. 9:309–316.Google Scholar
  6. Brush, F. R., Isaacson, M. D., Pellegrino, L. J., Rykaszewski, I. M., and Nagase Shain, C. (1991). Characteristics of the pituitary-adrenal system in the Syracuse High- and lowavoidance strains of rats (Rattus norvegicus).Behav. Genet. 21:35–48.Google Scholar
  7. Cannon, W. B. (1929). The wisdom of the body.Physiol. Rev. 9:399–431.Google Scholar
  8. Carlier, M., Nosten-Bertrand, M., and Michard-Vanhée, C. (1992). Separating genetic effects from maternal environmental effects. In Goldowitz, D., Wahlsten, D., and Wimer, R. E. (eds.),Techniques for the Genetic Analysis of Brain and Behavior, Elsevier Science, Amsterdam, pp. 111–126.Google Scholar
  9. Castanon, N., Dulluc, J., Le Moal, M., and Mormède, P. (1992). Prolactin as a link between behavioral and immune differences between the Roman rat lines.Physiol. Behav. 51:1235–1241.Google Scholar
  10. Castanon, N., Dulluc, J., Le Moal, M., and Mormède, P. (1994). Maturation of the behavioral and neuroendocrine differences between the Roman rat lines.Physiol. Behav. 55:775–782.Google Scholar
  11. Castanon, N., and Mormède, P. (1994). Psychobiogenetics: adapted tools for the study of the coupling between behavioral and neuroendocrine traits of emotional reactivity.Psychoneuroendocrinology 19:257–282.Google Scholar
  12. Ciaranello, R. D. (1978). Regulation of phenylethanolamine N-methyl transferase synthesis and degradation. I. Regulation by adrenal glucocorticoids.Mol. Pharmacol. 14:478–489.Google Scholar
  13. Cooper, D. O., and Stolk, J. M. (1979). Differences between inbred rat strains in the alteration of adrenal catecholamine synthesizing enzyme activities after immobilization stress.Neuroscience 4:1163–1172.Google Scholar
  14. Coyle, J. T., Wender, P., and Lipsky, A. (1973). Avoidance conditioning in different strains of rats: neurochemical correlates.Psychopharmacologia 31:25–34.Google Scholar
  15. Crusio, W. E. (1990). HOMAL: A computer program for selecting adequate data transformations.J. Hered. 81:173.Google Scholar
  16. D'Angio, M., Serrano, A., Driscoll, P., and Scatton, B. (1988). Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high-avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltametric study.Brain Res. 451:237–247.Google Scholar
  17. Dantzer, R., Arnone, M., and Mormède, P. (1980). Effects of frustration on behaviour and plasma corticosteroid levels in pigs.Physiol. Behav. 24:1–4.Google Scholar
  18. De Fries, J. C., Gervais, M. C., and Thomas, E. A. (1978). Response to 30 generations of selection for open-field activity in laboratory mice.Behav. Genet. 8:3–13.Google Scholar
  19. Del Paine, S., and Brush, F. R. (1990). Adrenal morphometry in unilateral and sham adrenalectomized Syracuse high and low avoidance rats.Physiol. Behav. 48:299–306.Google Scholar
  20. Demarest, K. T., and Moore, K. E. (1981). Sexual differences in the sensitivity of tuberoinfundibular dopamine neurones to the action of prolactin.Neuroendocrinology 33: 230–234.Google Scholar
  21. Demarest, K. T., Moore, K. E., and Riegle, G. D. (1985). Acute restraint stress decreases dopamine synthesis and turnover in the median eminence: a model for the study of inhibitory neuronal influences of tuberoinfundibular dopaminergic neurons.Neuroendocrinology 41:437–444.Google Scholar
  22. Denenberg, V. H. (1964). Critical periods, stimulus input, and emotional activity: a theory of infantile stimulation.Psychol. Rev. 71:335–351.Google Scholar
  23. Djikstra, H., Tilders, F. J. H., Hiehle, M. A., and Smelik, P. G. (1992). Hormonal reactions to fighting in rat colonies: Prolactin rises during defence not during offense.Physiol. Behav. 51:961–968.Google Scholar
  24. Driscoll, P. (1994). Genetic differences in coping with the environment as a strategy, rather than liability, for studying CNS-active compounds. In Palomo, T., and Archer, T., (eds.),Strategies for Studying Brain Disorders, Vol. 1. Depressive, Anxiety and Drug Abuse Disorders, Farrand Press, London, pp. 73–86.Google Scholar
  25. Driscoll, P., and Bättig, K. (1982). Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. In Lieblich, I. (ed.),Genetics of the Brain, Elsevier Biomedical press, Amsterdam, pp. 95–123.Google Scholar
  26. Driscoll, P., and Käsermann, H. P. (1977). Differences in the response to pentobarbital sodium of Roman high- and low-avoidance rats.Arzneim. Forsch./Drug Res. 27:1582–1584.Google Scholar
  27. Driscoll, P., Zivkovic, B., and Martin, J. R. (1984). Adrenal tyrosine hydroxylase (TH) activity in Roman High (RHA/Verh-) and Roman Low (RLA/Verh)-avoidance rats.Behav. Genet. 14:601 (abstract).Google Scholar
  28. Driscoll, P., Fitzgerald, R., Bättig, K., and Lipp, H. P. (1985). Bilateral, dorsal hippocampal lesions do not alter the twoavoidance performance of either Roman high-avoidance (RHA/Verh) or Roman low-avoidance (RLA/Verh) rats.Behav. Genet. 15:592 (abstract).Google Scholar
  29. Driscoll, P., Dedek, J., D'Angio, M., Claustre, Y., and Scatton, B. (1990) A genetically based model for divergent stress responses: Behavioral, neurochemical and hormonal aspects. In Pliska, V., and Stranzinger, G. (eds.),Farm Animals in Biomedical Research, Verlag Paul Parey, Hamburg-Berlin, pp.97–107.Google Scholar
  30. Ferchmin, P. A., Eterovic, V. A., and Levin, L. E. (1980). Genetic learning deficiency does not hinder environmentdependent brain growth.Physiol. Behav. 24:45–50.Google Scholar
  31. Gentsch, C., Lichtsteiner, M., and Feer, H. (1981). Locomotor activity, defecation score and corticosterone levels during an open-field exposure: A comparison among individually and group-housed rats, and genetically selected rat lines.Physiol. Behav. 27:183–186.Google Scholar
  32. Gentsch, C., Lichtsteiner, M., Driscoll, P., and Feer, H. (1982). Differential hormonal and physiological responses to stress in Roman high- and low-avoidance rats.Physiol. Behav. 28:259–263.Google Scholar
  33. Guttman, L. (1954). Some necessary conditions for common factor analysis.Psychometrika 18:159–161.Google Scholar
  34. Hendley, E. D., Atwater, D. G., Myers, M. M., and Whitehorn, D. (1983) Dissociation of genetic hyperactivity and hypertension in SHR.Hypertension 5:211–217.Google Scholar
  35. Herman, J. P., Thomas, G. J., Wiegand, S. J., and Gash, D. M. (1991). Lesions of parvocellular subdivisions of the hypothalamic paraventricular nucleus alter open field behavior and acquisition of sensory and spatial discrimination.Brain Res. 550:291–297.Google Scholar
  36. Hirsch, J. (1967). Behavior-genetic, or “experimental,” analysis: The challenge of science versus the lure of technology.Am. Psychol. 22:118–130.Google Scholar
  37. Holstege, G. (1992). The emotional motor system.Eur. J. Morphol. 30:67–79.Google Scholar
  38. Kerbusch, S., Van der Staay, F. J., and hendriks, N. (1981). A searching procedure for transformations and models in a classical mendelian cross breeding study.Behav. Genet. 11:239–254.Google Scholar
  39. Lemaire, V., Le Moal, M., and Mormède, P. (1993). Regulation of tyrosine hydroxylase and phenylethanolamine N-methyl transferase in the adrenal gland of Wistar rats stimulated by reserpine or chronic social stress.Am. J. Physiol. 264:R957-R962.Google Scholar
  40. Levi, L. (1975). Parameters of emotions: An evolutionary and ecological approach. In: Levi, L. (ed.),Emotions-Their Parameters and Measurement, Raven Press, New York, pp. 705–711.Google Scholar
  41. Malendowicz, L. K. (1987). Sex differences in adrenocortical structure and function XXIV. Comparative morphometric studies on adrenal cortex of intact mature male and female rats of different strains.Cell Tissue Res. 249:443–449.Google Scholar
  42. Mather, K., and Jinks, J. L. (1971).Biometrical Genetics: The Study of Continuous Variation, 2nd ed. Charpman and Hall, London.Google Scholar
  43. McCarty, R., and Kopin, I. J. (1978). Sympatho-adrenal medullary activity and behavior during exposure to footshock stress: a comparison of seven rats strains.Physiol. Behav. 21:567–572.Google Scholar
  44. Meaney, M. J., and Aitken, D. (1985). The effects of early, postnatal handling on hippocampal glucocorticoid receptor concentrations: Temporal parameters.Brain Res. 22: 300–304.Google Scholar
  45. Meyerhoff, J. L., Mougey, E. H., and Kant, G. J. (1987). Paraventricular lesions abolish the stress-induced rise in pituitary cyclic adenosine monophosphate and attenuate the increases in plasma levels of proopiomelanocortinderived peptides and prolactin.Neuroendocrinology 46: 222–230.Google Scholar
  46. Michard, C., and Roubertoux, P. (1986) Differences in patterns of pups care inMus musculus. VI. Uses of segregating generations to dissociate behavioral units in retrieving.J. Comp. Psychol. 100:285–290.Google Scholar
  47. Mormède, P. (1983). The vasopressin receptor antagonist dPTyr(Me)AVP does not prevent stress-induced ACTH and corticosterone release.Nature 302:345–346.Google Scholar
  48. Mormède, P. (1988). Les réponses neuroendocriniennes de stress.Rec. Med. Vet. 164:723–741.Google Scholar
  49. Mormède, P., Dantzer, R., Bluthé, R. M., and Caritez, J. C. (1984). Differences in adaptive abilities of three breeds of chinese pigs. Behavioral and neuroendocrine studies.Genet. Selec. Evol. 16:85–102.Google Scholar
  50. Mormède, P., Lemaire, V., Castanon, N., Dulluc, J., Laval, M., and Le Moal, M. (1990). Multiple neuroendocrine responses to chronic social stress: Interaction between individual characteristics and situational factors.Physiol. Behav. 47:1099–1105.Google Scholar
  51. Murphy, B. E. P. (1967). Some studies on the protein binding of the steroids and their application to the routine micro-and ultramicro-measurement.J. Endocrinol. 27:973–977.Google Scholar
  52. Okuno, S., and Fijisawa, H. (1983). Assay for tyrosine 3-monooxygenase using the coupled non-enzymatic decarboxylation of DOPA.Biochemistry 129:405–411.Google Scholar
  53. Pawlus, M. (1983). Genetic differences in mouse adrenocortical structure.Folia Histochem. Cytochem. 21:239–252.Google Scholar
  54. Quick, M., and Sourkes, T. L. (1976). Regulation of adrenal tyrosine hydroxylase activity: Neuronal versus local control studied with apomorphine.Biochem. Pharmacol. 25: 1157–1166.Google Scholar
  55. Richardson-Morton, K. D., Van de Kar, L. D., Brownfield, M. S., Lorens, S. A., Napier, T. C., and Urban, J. H. (1990). Stress-induced renin and corticosterone secretion is mediated by catecholaminergic nerve terminals in the hypothalamic paraventricular nucleus.Neuroendocrinology 51:320–327.Google Scholar
  56. Roozendaal, B., Koolhaas, J. M., and Bohus, B. (1991). Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloid lesioned male rats.Physiol. Behav. 50:771–775.Google Scholar
  57. Roozendaal, B., Wiersma, A., Driscoll, P., Koolhaas, J. M., and Bohus, B. (1992). Vasopressinergic modulation of stress response in the central amygdala of the Roman high-avoidance and low-avoidance rat.Brain Res. 596: 35–40.Google Scholar
  58. Roubertoux, P. L., Nosten-Bertrand, M., and Carlier, M. (1990). Additive and interactive effects of genotype and maternal environment.Adv. Study Behav. 19:205–247.Google Scholar
  59. Sandi, C., Castanon, N., Vitiello, S., Neveu, P. J., and Mormède, P. (1991). Different responsiveness of spleen lymphocytes from two lines of psychogenetically selected rats (Roman high and low avoidance).J. Neuroimmunol. 31: 27–33.Google Scholar
  60. Selmanoff, M. (1981). The lateral and medial eminence: Distribution of dopamine, norepinephrine, and luteinizing hormone-releasing hormone and the effect of prolactin on catecholamine turnover.Endocrinology 108:1716–1722.Google Scholar
  61. Shepard, R. A., Hewitt, J. K., and Broadhurst, P. L. (1985). The genetic architecture of hyponeophagia and the action of diazepam in rats.Behav. Genet. 15:265–286.Google Scholar
  62. Shigeta, S., Misawa, T., Yoshida, T., Aikawa, H., Momotani, H., and Miyake, T. (1989). Neurobehavioral analysis of high-rate Sidman avoidance rat strain.Jpn. J. Psychopharmacol. 9:217–224.Google Scholar
  63. Shigeta, S., Miyake, T., Misawa, T., Aikawa, H., Yoshida, T., and Katoh, H. (1990). A new inbred rat strain ‘THA.’Rat News Lett. 23:9–11.Google Scholar
  64. Shire, J. G. M. (1979). Corticosteroids and adrenocortical function in animals. In Shire, J. G. M. (ed.),Genetic Variation in Hormone Systems, Vol. 1, CRC Press, Boca Raton, FL, pp. 43–67.Google Scholar
  65. Speciale, S. G., Miller, J. D., McMillen, B. A., and German, D. C. (1986). Activation of specific central dopamine pathways: Locomotion and footshock.Brain Res. Bull. 16:33–38.Google Scholar
  66. Sternberg, E. M., Glowa, J. R., Smith, M. A., Calegero, A. E., Listwak, S. J., Aksentijevich, S., Chrousos, G. P., Wilder, R. L., and Gold, P. W. (1992). Corticotropin releasing hormone related behavioral and neuroendocrine responses to stress in Lewis and Fischer rats.Brain Res. 570:54–60.Google Scholar
  67. Stolk, J. M., Stolk, M. D., Hurst, J. H., Harris, P. Q., and Cooper, D. O. (1980). Genetic factors may determine the mechanisms responsible for altering rat adrenal gland catecholamine synthetic enzymes in response to stress. In Udsin, E., Kvetnansky, R., and Kopin, I. J. (eds.),Catecholamines and Stress: Recent Advances, Elsevier, North Holland, pp. 329–338.Google Scholar
  68. Swanson, L. W., and Sawchenko, P. E. (1983). Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei.Anno. Rev. Neurosci. 39:33–44.Google Scholar
  69. Taylor, A. L., and Fishman, L. M. (1988). Corticotropin-releasing hormone.N. Engl. J. Med. 319:213–222.Google Scholar
  70. Vadász, C, Baker, H, Fink, S. J., and Reis, D. J. (1985). Genetic effects and sexual dimorphism in tyrosine hydroxylase activity in two mouse strains and their reciprocal F1 hybrids.J. Neurogen. 2:219–230.Google Scholar
  71. Valle, C. C. N., Hacad, L. S., Sudo, L. S., and Garcia-Leme, J. (1985). Endocrine disorders render rats hyporeactive to non-steroidal but not to steroidal anti-inflammatory drugs.Braz. J. Med. Biol. Res. 18:345–347.Google Scholar
  72. Van de Kar, L. D., Richardson-Morton, K. D., and Rittenhouse, P. A. (1991). Stress: Neuroendocrine and pharmacological mechanisms. In Jasmin, G., and Cantin, M. (eds.),Stress Revisited. l. Neuroendocrinology of Stress. Methods and Achievements in Experimental Pathology, Karger, Basel, Vol. 14, pp. 133–173.Google Scholar
  73. Walker, C. D., Rivest, R. W., Meaney, M. J., and Aubert, M. L. (1989). Differential activation of the pituitary-adrenocortical axis after stress in the rat: Use of two genetically selected lines (Roman low- and high-avoidance rats) as a model.J. Endocrinol. 123:477–485.Google Scholar
  74. Walker, C. D., Aubert, M. L., Meaney, M. J., and Driscoll, P. (1992). Individual differences in the activity of the hypothalamo-pituitary-adrenocortical system after stressors: use of psychogenetically selected lines as a model. In Driscoll, P. (ed.),Genetically Defined Animal Models of Neurobehavioral Dysfunctions, Birkhäuser, Boston, pp. 276–296.Google Scholar
  75. Wurtman, R. J., and Axelrod, J. (1966). Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids.J. Biol. Chem. 241:2301–2305.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Nathalie Castanon
    • 1
  • Fernando Perez-Diaz
    • 2
  • Pierre Mormède
    • 1
  1. 1.Laboratoire de Génétique du Stress et Neurobiologie de l'Adaptation, CJF INSERM 94-05-INRAUniversité de Bordeaux IIBordeauxFrance
  2. 2.Laboratoire de Génétique Neurogénétique et Comportement URA 1294, CNRSUFR. Biomédicale Paris VParis Cedex 06France

Personalised recommendations